Suppr超能文献

相似文献

1
Mechanistic origins of diverse genome rearrangements in cancer.
Semin Cell Dev Biol. 2022 Mar;123:100-109. doi: 10.1016/j.semcdb.2021.03.003. Epub 2021 Apr 3.
2
Boveri and beyond: Chromothripsis and genomic instability from mitotic errors.
Mol Cell. 2024 Jan 4;84(1):55-69. doi: 10.1016/j.molcel.2023.11.002. Epub 2023 Nov 28.
3
Processes shaping cancer genomes - From mitotic defects to chromosomal rearrangements.
DNA Repair (Amst). 2021 Nov;107:103207. doi: 10.1016/j.dnarep.2021.103207. Epub 2021 Aug 10.
4
Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis.
Trends Cell Biol. 2017 Dec;27(12):917-930. doi: 10.1016/j.tcb.2017.08.005. Epub 2017 Sep 9.
5
Prevalence and clinical implications of chromothripsis in cancer genomes.
Curr Opin Oncol. 2014 Jan;26(1):64-72. doi: 10.1097/CCO.0000000000000038.
6
Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements.
Genes Dev. 2013 Dec 1;27(23):2513-30. doi: 10.1101/gad.229559.113.
7
A cell-based model system links chromothripsis with hyperploidy.
Mol Syst Biol. 2015 Sep 28;11(9):828. doi: 10.15252/msb.20156505.
8
The Diverse Effects of Complex Chromosome Rearrangements and Chromothripsis in Cancer Development.
Recent Results Cancer Res. 2015;200:165-93. doi: 10.1007/978-3-319-20291-4_8.
9
The Genomic Characteristics and Origin of Chromothripsis.
Methods Mol Biol. 2018;1769:3-19. doi: 10.1007/978-1-4939-7780-2_1.
10
Chromothripsis from DNA damage in micronuclei.
Nature. 2015 Jun 11;522(7555):179-84. doi: 10.1038/nature14493. Epub 2015 May 27.

引用本文的文献

1
Chromoplexy.
Methods Mol Biol. 2025;2968:53-64. doi: 10.1007/978-1-0716-4750-9_3.
2
Chromoplexy: A Pathway to Genomic Complexity and Cancer Development.
Int J Mol Sci. 2025 Apr 18;26(8):3826. doi: 10.3390/ijms26083826.
3
Cell-cycle dependent DNA repair and replication unifies patterns of chromosome instability.
Nat Commun. 2025 Mar 28;16(1):3033. doi: 10.1038/s41467-025-58245-z.
5
The 3D genome and its impacts on human health and disease.
Life Med. 2023 Mar 23;2(2):lnad012. doi: 10.1093/lifemedi/lnad012. eCollection 2023 Apr.
6
Diverse Genome Structures among Eukaryotes May Have Arisen in Response to Genetic Conflict.
Genome Biol Evol. 2024 Nov 1;16(11). doi: 10.1093/gbe/evae239.
7
RCC1 depletion drives protein transport defects and rupture in micronuclei.
bioRxiv. 2024 Sep 5:2024.09.04.611299. doi: 10.1101/2024.09.04.611299.
8
Aneuploidy and complex genomic rearrangements in cancer evolution.
Nat Cancer. 2024 Feb;5(2):228-239. doi: 10.1038/s43018-023-00711-y. Epub 2024 Jan 29.
9
DNA polymerases in precise and predictable CRISPR/Cas9-mediated chromosomal rearrangements.
BMC Biol. 2023 Dec 8;21(1):288. doi: 10.1186/s12915-023-01784-y.
10
Cell cycle responses to Topoisomerase II inhibition: Molecular mechanisms and clinical implications.
J Cell Biol. 2023 Dec 4;222(12). doi: 10.1083/jcb.202209125. Epub 2023 Nov 13.

本文引用的文献

1
Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing.
Nat Genet. 2021 Jun;53(6):895-905. doi: 10.1038/s41588-021-00838-7. Epub 2021 Apr 12.
2
Single-strand DNA breaks cause replisome disassembly.
Mol Cell. 2021 Mar 18;81(6):1309-1318.e6. doi: 10.1016/j.molcel.2020.12.039. Epub 2021 Jan 22.
3
ER-directed TREX1 limits cGAS activation at micronuclei.
Mol Cell. 2021 Feb 18;81(4):724-738.e9. doi: 10.1016/j.molcel.2020.12.037. Epub 2021 Jan 20.
4
Chromothripsis drives the evolution of gene amplification in cancer.
Nature. 2021 Mar;591(7848):137-141. doi: 10.1038/s41586-020-03064-z. Epub 2020 Dec 23.
5
Radiation-induced DNA damage and repair effects on 3D genome organization.
Nat Commun. 2020 Dec 2;11(1):6178. doi: 10.1038/s41467-020-20047-w.
6
Repair of G1 induced DNA double-strand breaks in S-G2/M by alternative NHEJ.
Nat Commun. 2020 Oct 16;11(1):5239. doi: 10.1038/s41467-020-19060-w.
7
Distinct Classes of Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs.
Cell. 2020 Oct 1;183(1):197-210.e32. doi: 10.1016/j.cell.2020.08.006.
8
Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers.
Nat Genet. 2020 Sep;52(9):891-897. doi: 10.1038/s41588-020-0678-2. Epub 2020 Aug 17.
9
APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis.
Nat Genet. 2020 Sep;52(9):884-890. doi: 10.1038/s41588-020-0667-5. Epub 2020 Jul 27.
10
Unrestrained ESCRT-III drives micronuclear catastrophe and chromosome fragmentation.
Nat Cell Biol. 2020 Jul;22(7):856-867. doi: 10.1038/s41556-020-0537-5. Epub 2020 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验