文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

癌症中不同基因组重排的机制起源。

Mechanistic origins of diverse genome rearrangements in cancer.

机构信息

Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Semin Cell Dev Biol. 2022 Mar;123:100-109. doi: 10.1016/j.semcdb.2021.03.003. Epub 2021 Apr 3.


DOI:10.1016/j.semcdb.2021.03.003
PMID:33824062
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8487437/
Abstract

Cancer genomes frequently harbor structural chromosomal rearrangements that disrupt the linear DNA sequence order and copy number. To date, diverse classes of structural variants have been identified across multiple cancer types. These aberrations span a wide spectrum of complexity, ranging from simple translocations to intricate patterns of rearrangements involving multiple chromosomes. Although most somatic rearrangements are acquired gradually throughout tumorigenesis, recent interrogation of cancer genomes have uncovered novel categories of complex rearrangements that arises rapidly through a one-off catastrophic event, including chromothripsis and chromoplexy. Here we review the cellular and molecular mechanisms contributing to the formation of diverse structural rearrangement classes during cancer development. Genotoxic stress from a myriad of extrinsic and intrinsic sources can trigger DNA double-strand breaks that are subjected to DNA repair with potentially mutagenic outcomes. We also highlight how aberrant nuclear structures generated through mitotic cell division errors, such as rupture-prone micronuclei and chromosome bridges, can instigate massive DNA damage and the formation of complex rearrangements in cancer genomes.

摘要

癌症基因组经常存在结构染色体重排,破坏线性 DNA 序列顺序和拷贝数。迄今为止,已经在多种癌症类型中鉴定出不同类别的结构变体。这些异常横跨广泛的复杂性范围,从简单的易位到涉及多个染色体的复杂重排模式。尽管大多数体细胞重排是在肿瘤发生过程中逐渐获得的,但最近对癌症基因组的研究揭示了一类新的复杂重排,这些重排是通过一次性灾难性事件迅速产生的,包括染色体重排和染色体重组。在这里,我们回顾了在癌症发展过程中形成不同结构重排类别的细胞和分子机制。来自多种外在和内在来源的遗传毒性应激会引发 DNA 双链断裂,这些断裂会通过潜在的诱变结果进行 DNA 修复。我们还强调了有丝分裂细胞分裂错误产生的异常核结构,如易破裂的微核和染色体桥,如何引发大量 DNA 损伤和癌症基因组中复杂重排的形成。

相似文献

[1]
Mechanistic origins of diverse genome rearrangements in cancer.

Semin Cell Dev Biol. 2022-3

[2]
Boveri and beyond: Chromothripsis and genomic instability from mitotic errors.

Mol Cell. 2024-1-4

[3]
Processes shaping cancer genomes - From mitotic defects to chromosomal rearrangements.

DNA Repair (Amst). 2021-11

[4]
Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis.

Trends Cell Biol. 2017-9-9

[5]
Prevalence and clinical implications of chromothripsis in cancer genomes.

Curr Opin Oncol. 2014-1

[6]
Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements.

Genes Dev. 2013-12-1

[7]
A cell-based model system links chromothripsis with hyperploidy.

Mol Syst Biol. 2015-9-28

[8]
The Diverse Effects of Complex Chromosome Rearrangements and Chromothripsis in Cancer Development.

Recent Results Cancer Res. 2015

[9]
The Genomic Characteristics and Origin of Chromothripsis.

Methods Mol Biol. 2018

[10]
Chromothripsis from DNA damage in micronuclei.

Nature. 2015-6-11

引用本文的文献

[1]
Chromoplexy.

Methods Mol Biol. 2025

[2]
Chromoplexy: A Pathway to Genomic Complexity and Cancer Development.

Int J Mol Sci. 2025-4-18

[3]
Cell-cycle dependent DNA repair and replication unifies patterns of chromosome instability.

Nat Commun. 2025-3-28

[4]
FuSViz-visualization and interpretation of structural variation using cancer genomics and transcriptomics data.

Nucleic Acids Res. 2025-2-8

[5]
The 3D genome and its impacts on human health and disease.

Life Med. 2023-3-23

[6]
Diverse Genome Structures among Eukaryotes May Have Arisen in Response to Genetic Conflict.

Genome Biol Evol. 2024-11-1

[7]
RCC1 depletion drives protein transport defects and rupture in micronuclei.

bioRxiv. 2024-9-5

[8]
Aneuploidy and complex genomic rearrangements in cancer evolution.

Nat Cancer. 2024-2

[9]
DNA polymerases in precise and predictable CRISPR/Cas9-mediated chromosomal rearrangements.

BMC Biol. 2023-12-8

[10]
Cell cycle responses to Topoisomerase II inhibition: Molecular mechanisms and clinical implications.

J Cell Biol. 2023-12-4

本文引用的文献

[1]
Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing.

Nat Genet. 2021-6

[2]
Single-strand DNA breaks cause replisome disassembly.

Mol Cell. 2021-3-18

[3]
ER-directed TREX1 limits cGAS activation at micronuclei.

Mol Cell. 2021-2-18

[4]
Chromothripsis drives the evolution of gene amplification in cancer.

Nature. 2021-3

[5]
Radiation-induced DNA damage and repair effects on 3D genome organization.

Nat Commun. 2020-12-2

[6]
Repair of G1 induced DNA double-strand breaks in S-G2/M by alternative NHEJ.

Nat Commun. 2020-10-16

[7]
Distinct Classes of Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs.

Cell. 2020-10-1

[8]
Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers.

Nat Genet. 2020-8-17

[9]
APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis.

Nat Genet. 2020-7-27

[10]
Unrestrained ESCRT-III drives micronuclear catastrophe and chromosome fragmentation.

Nat Cell Biol. 2020-6-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索