Zhang Cheng-Zhong, Spektor Alexander, Cornils Hauke, Francis Joshua M, Jackson Emily K, Liu Shiwei, Meyerson Matthew, Pellman David
1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [3] Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA [4] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.
Nature. 2015 Jun 11;522(7555):179-84. doi: 10.1038/nature14493. Epub 2015 May 27.
Genome sequencing has uncovered a new mutational phenomenon in cancer and congenital disorders called chromothripsis. Chromothripsis is characterized by extensive genomic rearrangements and an oscillating pattern of DNA copy number levels, all curiously restricted to one or a few chromosomes. The mechanism for chromothripsis is unknown, but we previously proposed that it could occur through the physical isolation of chromosomes in aberrant nuclear structures called micronuclei. Here, using a combination of live cell imaging and single-cell genome sequencing, we demonstrate that micronucleus formation can indeed generate a spectrum of genomic rearrangements, some of which recapitulate all known features of chromothripsis. These events are restricted to the mis-segregated chromosome and occur within one cell division. We demonstrate that the mechanism for chromothripsis can involve the fragmentation and subsequent reassembly of a single chromatid from a micronucleus. Collectively, these experiments establish a new mutational process of which chromothripsis is one extreme outcome.
基因组测序揭示了癌症和先天性疾病中一种名为染色体碎裂的新突变现象。染色体碎裂的特征是广泛的基因组重排以及DNA拷贝数水平的振荡模式,所有这些奇怪地局限于一条或几条染色体。染色体碎裂的机制尚不清楚,但我们之前提出它可能通过在称为微核的异常核结构中染色体的物理隔离而发生。在这里,我们结合活细胞成像和单细胞基因组测序,证明微核形成确实可以产生一系列基因组重排,其中一些重排概括了染色体碎裂的所有已知特征。这些事件局限于错误分离的染色体,并发生在一个细胞分裂内。我们证明染色体碎裂的机制可能涉及来自微核的单个染色单体的断裂和随后的重新组装。总的来说,这些实验建立了一个新的突变过程,而染色体碎裂是其中一个极端结果。
Nature. 2015-6-11
Annu Rev Genet. 2015-10-6
Nature. 2012-1-18
Methods Mol Biol. 2018
Cell. 2015-6-18
Methods Mol Biol. 2025
Methods Mol Biol. 2025
Methods Mol Biol. 2025
Methods Mol Biol. 2025
Methods Mol Biol. 2025
Methods Mol Biol. 2025
Methods Mol Biol. 2025
Methods Mol Biol. 2025
Methods Mol Biol. 2025
Nat Commun. 2015-4-16
Cancer Cell. 2014-11-10
Proc Natl Acad Sci U S A. 2014-9-16
PLoS One. 2014-8-19
Nat Rev Genet. 2014-7-1
Nucleic Acids Res. 2014-7
Cancer Discov. 2014-6-3