Suppr超能文献

利用基因表达数据和机器学习对射血分数保留的心力衰竭患者进行风险预测

Risk Prediction in Patients With Heart Failure With Preserved Ejection Fraction Using Gene Expression Data and Machine Learning.

作者信息

Zhou Liye, Guo Zhifei, Wang Bijue, Wu Yongqing, Li Zhi, Yao Hongmei, Fang Ruiling, Yang Haitao, Cao Hongyan, Cui Yuehua

机构信息

Division of Health Management, School of Management, Shanxi Medical University, Taiyuan, China.

Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China.

出版信息

Front Genet. 2021 Mar 22;12:652315. doi: 10.3389/fgene.2021.652315. eCollection 2021.

Abstract

Heart failure with preserved ejection fraction (HFpEF) has become a major health issue because of its high mortality, high heterogeneity, and poor prognosis. Using genomic data to classify patients into different risk groups is a promising method to facilitate the identification of high-risk groups for further precision treatment. Here, we applied six machine learning models, namely kernel partial least squares with the genetic algorithm (GA-KPLS), the least absolute shrinkage and selection operator (LASSO), random forest, ridge regression, support vector machine, and the conventional logistic regression model, to predict HFpEF risk and to identify subgroups at high risk of death based on gene expression data. The model performance was evaluated using various criteria. Our analysis was focused on 149 HFpEF patients from the Framingham Heart Study cohort who were classified into good-outcome and poor-outcome groups based on their 3-year survival outcome. The results showed that the GA-KPLS model exhibited the best performance in predicting patient risk. We further identified 116 differentially expressed genes (DEGs) between the two groups, thus providing novel therapeutic targets for HFpEF. Additionally, the DEGs were enriched in Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways related to HFpEF. The GA-KPLS-based HFpEF model is a powerful method for risk stratification of 3-year mortality in HFpEF patients.

摘要

射血分数保留的心力衰竭(HFpEF)因其高死亡率、高异质性和不良预后已成为一个主要的健康问题。利用基因组数据将患者分类为不同风险组是一种有前景的方法,有助于识别高危组以便进行进一步的精准治疗。在此,我们应用了六种机器学习模型,即带遗传算法的核偏最小二乘法(GA-KPLS)、最小绝对收缩和选择算子(LASSO)、随机森林、岭回归、支持向量机以及传统的逻辑回归模型,来预测HFpEF风险并基于基因表达数据识别高死亡风险亚组。使用各种标准评估模型性能。我们的分析聚焦于弗雷明汉心脏研究队列中的149例HFpEF患者,这些患者根据其3年生存结果被分为良好结局组和不良结局组。结果表明,GA-KPLS模型在预测患者风险方面表现最佳。我们进一步鉴定出两组之间有116个差异表达基因(DEG),从而为HFpEF提供了新的治疗靶点。此外,这些DEG在与HFpEF相关的基因本体术语和京都基因与基因组百科全书途径中富集。基于GA-KPLS的HFpEF模型是对HFpEF患者3年死亡率进行风险分层的有力方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f70e/8019773/899a619015c3/fgene-12-652315-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验