Suppr超能文献

多标志物和机器学习方法能否帮助心力衰竭患者分层?

Could a Multi-Marker and Machine Learning Approach Help Stratify Patients with Heart Failure?

机构信息

PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France.

CHU de Montpellier, Département de Biochimie et Hormonologie, Université de Montpellier, 34090 Montpellier, France.

出版信息

Medicina (Kaunas). 2021 Sep 22;57(10):996. doi: 10.3390/medicina57100996.

Abstract

Half of the patients with heart failure (HF) have preserved ejection fraction (HFpEF). To date, there are no specific markers to distinguish this subgroup. The main objective of this work was to stratify HF patients using current biochemical markers coupled with clinical data. The cohort study included HFpEF ( = 24) and heart failure with reduced ejection fraction (HFrEF) ( = 34) patients as usually considered in clinical practice based on cardiac imaging (EF ≥ 50% for HFpEF; EF < 50% for HFrEF). Routine blood tests consisted of measuring biomarkers of renal and heart functions, inflammation, and iron metabolism. A multi-test approach and analysis of peripheral blood samples aimed to establish a computerized Machine Learning strategy to provide a blood signature to distinguish HFpEF and HFrEF. Based on logistic regression, demographic characteristics and clinical biomarkers showed no statistical significance to differentiate the HFpEF and HFrEF patient subgroups. Hence a multivariate factorial discriminant analysis, performed blindly using the data set, allowed us to stratify the two HF groups. Consequently, a Machine Learning (ML) strategy was developed using the same variables in a genetic algorithm approach. ML provided very encouraging explorative results when considering the small size of the samples applied. The accuracy and the sensitivity were high for both validation and test groups (69% and 100%, 64% and 75%, respectively). Sensitivity was 100% for the validation and 75% for the test group, whereas specificity was 44% and 55% for the validation and test groups because of the small number of samples. Lastly, the precision was acceptable, with 58% in the validation and 60% in the test group. Combining biochemical and clinical markers is an excellent entry to develop a computer classification tool to diagnose HFpEF. This translational approach is a springboard for improving new personalized treatment methods and identifying "high-yield" populations for clinical trials.

摘要

一半的心衰(HF)患者射血分数保留(HFpEF)。迄今为止,尚无特定标志物可区分该亚组。这项工作的主要目的是使用当前的生化标志物结合临床数据对 HF 患者进行分层。该队列研究纳入了 HFpEF(n=24)和射血分数降低的心衰(HFrEF)(n=34)患者,这些患者是根据心脏成像在临床上通常被认为属于这两个亚组的(HFpEF 的 EF≥50%;HFrEF 的 EF<50%)。常规血液检查包括测量肾功能和心功能、炎症和铁代谢的生物标志物。多测试方法和外周血样本分析旨在建立计算机化机器学习策略,以提供区分 HFpEF 和 HFrEF 的血液特征。基于逻辑回归,人口统计学特征和临床生物标志物对区分 HFpEF 和 HFrEF 患者亚组没有统计学意义。因此,使用数据集进行的多变量因子判别分析使我们能够对两个 HF 组进行分层。因此,使用遗传算法方法,在相同变量上开发了机器学习(ML)策略。考虑到应用的样本量较小,ML 提供了非常有希望的探索性结果。验证组和测试组的准确性和敏感性都很高(分别为 69%和 100%、64%和 75%)。验证组的敏感性为 100%,测试组的敏感性为 75%,特异性分别为 44%和 55%,因为样本数量较少。最后,验证组的精度为 58%,测试组的精度为 60%,精度是可以接受的。结合生化和临床标志物是开发用于诊断 HFpEF 的计算机分类工具的绝佳途径。这种转化方法为改善新的个性化治疗方法和识别临床试验的“高收益”人群提供了一个跳板。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8d/8538712/f5e3020e166b/medicina-57-00996-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验