Suppr超能文献

基于模拟的新冠肺炎在大学传播的情景分析。

Simulation-based what-if analysis for controlling the spread of Covid-19 in universities.

机构信息

Department of Industrial and Systems Engineering, Virginia Tech, Falls Church, Virginia, United States of America.

出版信息

PLoS One. 2021 Feb 1;16(2):e0246323. doi: 10.1371/journal.pone.0246323. eCollection 2021.

Abstract

A simulation model is developed to analyze the spread of covid-19 in universities. The model can be used to conduct a what-if analysis and estimate infection cases under different policies. For proof-of-concept, the model is simulated for a hypothetical university of 25,000 students and 3,000 faculty/staff in a U.S. college town. Simulation results show that early outbreaks are very likely, and there is no silver bullet to avoid them. Instead, a combination of policies should be carefully implemented. The results suggest (almost) full remote university operations from the beginning of the semester. In a less-preferred alternative, if universities decide to have students attend in person, they should encourage remote operations for high-risk individuals, conduct frequent rapid tests, enforce mask use, communicate with students and employees about the risks, and promote social distancing. Universities should be willing to move to remote operations if cases rise. Under this scenario, and considering implementation challenges, many universities are still likely to experience an early outbreak, and the likelihood of having a case of death is worrisome. In the long run, students and faculty react to the risks, and even if universities decide to continue operations, classes are likely to have very low in-person attendance. Overall, our analysis depicts several sources of system complexities, negative unintended consequences of relying on a single policy, non-linear incremental effects, and positive synergies of implementing multiple policies. A simulation platform for a what-if analysis is offered so marginal effectiveness of different policies and different decision-making thresholds for closure can be tested for universities of varying populations.

摘要

建立了一个模拟模型来分析新冠病毒在大学中的传播。该模型可用于进行假设分析,并估计在不同政策下的感染病例数。为了验证概念,该模型对一个拥有 25000 名学生和 3000 名教职员工的美国大学城的假设大学进行了模拟。模拟结果表明,早期爆发的可能性非常大,没有万能的解决方案来避免这些爆发。相反,应谨慎实施一系列政策。结果表明,(几乎)从学期开始就应全面远程运营大学。在不太理想的替代方案中,如果大学决定让学生亲自上课,他们应该鼓励高风险人群远程操作,定期进行快速检测,强制使用口罩,向学生和员工传达风险信息,并促进社交距离。如果病例上升,大学应该愿意转向远程运营。在这种情况下,考虑到实施挑战,许多大学仍有可能出现早期爆发,而且出现死亡病例的可能性令人担忧。从长远来看,学生和教职员工会对风险做出反应,即使大学决定继续运营,课堂也可能只有非常低的面对面出勤率。总的来说,我们的分析描绘了几个系统复杂性的来源、依赖单一政策的负面意外后果、非线性增量效应以及实施多项政策的积极协同作用。提供了一个用于假设分析的模拟平台,以便可以测试不同人群的大学中不同政策的边际效果和不同的关闭决策阈值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c781/7850497/fb048a00524a/pone.0246323.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验