Suppr超能文献

非危重型 COVID-19 患者结局预测因素的分类与分析。

Classification and analysis of outcome predictors in non-critically ill COVID-19 patients.

机构信息

Department of Infectious Diseases, ASFO Santa Maria degli Angeli Hospital of Pordenone, Pordenone, Italy.

Department of Medicine, University of Udine, Udine, Italy.

出版信息

Intern Med J. 2021 Apr;51(4):506-514. doi: 10.1111/imj.15140. Epub 2021 Apr 9.

Abstract

BACKGROUND

Early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients who could develop a severe form of COVID-19 must be considered of great importance to carry out adequate care and optimise the use of limited resources.

AIMS

To use several machine learning classification models to analyse a series of non-critically ill COVID-19 patients admitted to a general medicine ward to verify if any clinical variables recorded could predict the clinical outcome.

METHODS

We retrospectively analysed non-critically ill patients with COVID-19 admitted to the general ward of the hospital in Pordenone from 1 March 2020 to 30 April 2020. Patients' characteristics were compared based on clinical outcomes. Through several machine learning classification models, some predictors for clinical outcome were detected.

RESULTS

In the considered period, we analysed 176 consecutive patients admitted: 119 (67.6%) were discharged, 35 (19.9%) dead and 22 (12.5%) were transferred to intensive care unit. The most accurate models were a random forest model (M2) and a conditional inference tree model (M5) (accuracy = 0.79; 95% confidence interval 0.64-0.90, for both). For M2, glomerular filtration rate and creatinine were the most accurate predictors for the outcome, followed by age and fraction-inspired oxygen. For M5, serum sodium, body temperature and arterial pressure of oxygen and inspiratory fraction of oxygen ratio were the most reliable predictors.

CONCLUSIONS

In non-critically ill COVID-19 patients admitted to a medical ward, glomerular filtration rate, creatinine and serum sodium were promising predictors for the clinical outcome. Some factors not determined by COVID-19, such as age or dementia, influence clinical outcomes.

摘要

背景

早期发现可能发展为 COVID-19 严重形式的严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 感染患者,对于进行充分的护理和优化有限资源的使用至关重要。

目的

使用几种机器学习分类模型分析一系列非重症 COVID-19 患者,以验证记录的任何临床变量是否可以预测临床结果。

方法

我们回顾性分析了 2020 年 3 月 1 日至 4 月 30 日期间入住波德诺内医院普通病房的非重症 COVID-19 患者。根据临床结局比较患者特征。通过几种机器学习分类模型,检测了一些临床结局的预测因子。

结果

在所考虑的时期内,我们分析了 176 例连续入院患者:119 例(67.6%)出院,35 例(19.9%)死亡,22 例(12.5%)转入重症监护病房。最准确的模型是随机森林模型(M2)和条件推断树模型(M5)(准确率=0.79;95%置信区间 0.64-0.90,两者均)。对于 M2,肾小球滤过率和肌酐是预测结局的最准确指标,其次是年龄和吸入氧分数。对于 M5,血清钠、体温、动脉血氧分压和吸入氧分数比是最可靠的预测因子。

结论

在入住内科病房的非重症 COVID-19 患者中,肾小球滤过率、肌酐和血清钠是预测临床结局的有前途的指标。一些不由 COVID-19 决定的因素,如年龄或痴呆,会影响临床结局。

相似文献

8
Early versus late tracheostomy in critically ill COVID-19 patients.危重症 COVID-19 患者的早期与晚期气管切开术。
Cochrane Database Syst Rev. 2023 Nov 20;11(11):CD015532. doi: 10.1002/14651858.CD015532.

引用本文的文献

10
Chromogranin A plasma levels predict mortality in COVID-19.嗜铬粒蛋白 A 血浆水平可预测 COVID-19 患者的死亡率。
PLoS One. 2022 Apr 25;17(4):e0267235. doi: 10.1371/journal.pone.0267235. eCollection 2022.

本文引用的文献

4
Dementia Care in the Time of COVID-19 Pandemic.COVID-19 大流行时期的痴呆症护理。
J Alzheimers Dis. 2020;76(2):475-479. doi: 10.3233/JAD-200461.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验