Suppr超能文献

贝叶斯系统发育地理学分析在 BEAST 中纳入预测因子和个体旅行史。

Bayesian Phylogeographic Analysis Incorporating Predictors and Individual Travel Histories in BEAST.

机构信息

Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Laboratory of Clinical and Evolutionary Virology, Leuven, Belgium.

Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.

出版信息

Curr Protoc. 2021 Apr;1(4):e98. doi: 10.1002/cpz1.98.

Abstract

Advances in sequencing technologies have tremendously reduced the time and costs associated with sequence generation, making genomic data an important asset for routine public health practices. Within this context, phylogenetic and phylogeographic inference has become a popular method to study disease transmission. In a Bayesian context, these approaches have the benefit of accommodating phylogenetic uncertainty, and popular implementations provide the possibility to parameterize the transition rates between locations as a function of epidemiological and ecological data to reconstruct spatial spread while simultaneously identifying the main factors impacting the spatial spread dynamics. Recent developments enable researchers to make use of travel history data of infected individuals in the reconstruction of pathogen spread, offering increased inference accuracy and mitigating sampling bias. Here, we describe a detailed workflow to reconstruct the spatial spread of a pathogen through Bayesian phylogeographic analysis in discrete space using these novel approaches, implemented in BEAST. The individual protocols focus on how to incorporate molecular data, covariates of spread, and individual travel history data into the analysis. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Creating a SARS-CoV-2 MSA using sequences from GISAID Basic Protocol 2: Setting up a discrete trait phylogeographic reconstruction in BEAUti Basic Protocol 3: Phylogeographic reconstruction incorporating travel history information Basic Protocol 4: Visualizing ancestral spatial trajectories for specific taxa.

摘要

测序技术的进步极大地缩短了序列生成所需的时间和成本,使得基因组数据成为常规公共卫生实践的重要资产。在这种背景下,系统发育和系统地理学推断已成为研究疾病传播的一种流行方法。在贝叶斯框架下,这些方法具有容纳系统发育不确定性的优势,并且流行的实现方式为参数化位置之间的转移率提供了可能性,这些转移率可以作为流行病学和生态学数据的函数,以重建空间传播,同时识别影响空间传播动态的主要因素。最近的发展使研究人员能够利用受感染个体的旅行史数据来重建病原体的传播,从而提高推断的准确性并减轻抽样偏差。在这里,我们描述了一个详细的工作流程,通过贝叶斯系统地理学分析在离散空间中重建病原体的空间传播,该方法使用了这些新方法,并在 BEAST 中实现。这些单独的方案侧重于如何将分子数据、传播的协变量和个体旅行史数据纳入分析中。© 2021 威利父子公司。基础方案 1:使用 GISAID 中的序列创建 SARS-CoV-2 MSA 基础方案 2:在 BEAUti 中设置离散特征系统地理学重建基础方案 3:包含旅行史信息的系统地理学重建基础方案 4:为特定分类单元可视化祖先的空间轨迹

相似文献

3
Bayesian phylogenetics with BEAUti and the BEAST 1.7.
Mol Biol Evol. 2012 Aug;29(8):1969-73. doi: 10.1093/molbev/mss075. Epub 2012 Feb 25.
5
Relax, Keep Walking - A Practical Guide to Continuous Phylogeographic Inference with BEAST.
Mol Biol Evol. 2021 Jul 29;38(8):3486-3493. doi: 10.1093/molbev/msab031.
8
Genomics, social media and mobile phone data enable mapping of SARS-CoV-2 lineages to inform health policy in Bangladesh.
Nat Microbiol. 2021 Oct;6(10):1271-1278. doi: 10.1038/s41564-021-00955-3. Epub 2021 Sep 8.
9
Uncovering two phases of early intercontinental COVID-19 transmission dynamics.
J Travel Med. 2020 Dec 23;27(8). doi: 10.1093/jtm/taaa200.
10
Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.
Nature. 2021 Jul;595(7869):707-712. doi: 10.1038/s41586-021-03677-y. Epub 2021 Jun 7.

引用本文的文献

4
Dengue Virus Serotype 3 Origins and Genetic Dynamics, Jamaica.
Emerg Infect Dis. 2024 Oct;30(10):2149-2154. doi: 10.3201/eid3010.240170. Epub 2024 Aug 27.
5
Estimating geographical spread of within Israel using genomic data.
Microb Genom. 2024 Jun;10(6). doi: 10.1099/mgen.0.001262.
6
Genomic Surveillance of Recent Dengue Outbreaks in Colombo, Sri Lanka.
Viruses. 2023 Jun 21;15(7):1408. doi: 10.3390/v15071408.
8
The Principles of SARS-CoV-2 Intervariant Competition Are Exemplified in the Pre-Omicron Era of the Colombian Epidemic.
Microbiol Spectr. 2023 Jun 15;11(3):e0534622. doi: 10.1128/spectrum.05346-22. Epub 2023 May 16.
10
SPREAD 4: online visualisation of pathogen phylogeographic reconstructions.
Virus Evol. 2022 Sep 26;8(2):veac088. doi: 10.1093/ve/veac088. eCollection 2022.

本文引用的文献

2
Bayesian Evaluation of Temporal Signal in Measurably Evolving Populations.
Mol Biol Evol. 2020 Nov 1;37(11):3363-3379. doi: 10.1093/molbev/msaa163.
3
Online Bayesian Phylodynamic Inference in BEAST with Application to Epidemic Reconstruction.
Mol Biol Evol. 2020 Jun 1;37(6):1832-1842. doi: 10.1093/molbev/msaa047.
4
Data, disease and diplomacy: GISAID's innovative contribution to global health.
Glob Chall. 2017 Jan 10;1(1):33-46. doi: 10.1002/gch2.1018. eCollection 2017 Jan.
5
Bayesian Estimation of Past Population Dynamics in BEAST 1.10 Using the Skygrid Coalescent Model.
Mol Biol Evol. 2019 Nov 1;36(11):2620-2628. doi: 10.1093/molbev/msz172.
7
Incorporating sampling uncertainty in the geospatial assignment of taxa for virus phylogeography.
Virus Evol. 2019 Feb 28;5(1):vey043. doi: 10.1093/ve/vey043. eCollection 2019 Jan.
8
Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10.
Virus Evol. 2018 Jun 8;4(1):vey016. doi: 10.1093/ve/vey016. eCollection 2018 Jan.
9
MASCOT: parameter and state inference under the marginal structured coalescent approximation.
Bioinformatics. 2018 Nov 15;34(22):3843-3848. doi: 10.1093/bioinformatics/bty406.
10
Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7.
Syst Biol. 2018 Sep 1;67(5):901-904. doi: 10.1093/sysbio/syy032.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验