Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Laboratory of Clinical and Evolutionary Virology, Leuven, Belgium.
Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
Curr Protoc. 2021 Apr;1(4):e98. doi: 10.1002/cpz1.98.
Advances in sequencing technologies have tremendously reduced the time and costs associated with sequence generation, making genomic data an important asset for routine public health practices. Within this context, phylogenetic and phylogeographic inference has become a popular method to study disease transmission. In a Bayesian context, these approaches have the benefit of accommodating phylogenetic uncertainty, and popular implementations provide the possibility to parameterize the transition rates between locations as a function of epidemiological and ecological data to reconstruct spatial spread while simultaneously identifying the main factors impacting the spatial spread dynamics. Recent developments enable researchers to make use of travel history data of infected individuals in the reconstruction of pathogen spread, offering increased inference accuracy and mitigating sampling bias. Here, we describe a detailed workflow to reconstruct the spatial spread of a pathogen through Bayesian phylogeographic analysis in discrete space using these novel approaches, implemented in BEAST. The individual protocols focus on how to incorporate molecular data, covariates of spread, and individual travel history data into the analysis. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Creating a SARS-CoV-2 MSA using sequences from GISAID Basic Protocol 2: Setting up a discrete trait phylogeographic reconstruction in BEAUti Basic Protocol 3: Phylogeographic reconstruction incorporating travel history information Basic Protocol 4: Visualizing ancestral spatial trajectories for specific taxa.
测序技术的进步极大地缩短了序列生成所需的时间和成本,使得基因组数据成为常规公共卫生实践的重要资产。在这种背景下,系统发育和系统地理学推断已成为研究疾病传播的一种流行方法。在贝叶斯框架下,这些方法具有容纳系统发育不确定性的优势,并且流行的实现方式为参数化位置之间的转移率提供了可能性,这些转移率可以作为流行病学和生态学数据的函数,以重建空间传播,同时识别影响空间传播动态的主要因素。最近的发展使研究人员能够利用受感染个体的旅行史数据来重建病原体的传播,从而提高推断的准确性并减轻抽样偏差。在这里,我们描述了一个详细的工作流程,通过贝叶斯系统地理学分析在离散空间中重建病原体的空间传播,该方法使用了这些新方法,并在 BEAST 中实现。这些单独的方案侧重于如何将分子数据、传播的协变量和个体旅行史数据纳入分析中。© 2021 威利父子公司。基础方案 1:使用 GISAID 中的序列创建 SARS-CoV-2 MSA 基础方案 2:在 BEAUti 中设置离散特征系统地理学重建基础方案 3:包含旅行史信息的系统地理学重建基础方案 4:为特定分类单元可视化祖先的空间轨迹