Suppr超能文献

利用旅行史元数据进行信息丰富的系统地理学推断的重要性:以 SARS-CoV-2 早期传入澳大利亚为例。

The importance of utilizing travel history metadata for informative phylogeographical inferences: a case study of early SARS-CoV-2 introductions into Australia.

机构信息

Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.

Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.

出版信息

Microb Genom. 2023 Aug;9(8). doi: 10.1099/mgen.0.001099.

Abstract

Inferring the spatiotemporal spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via Bayesian phylogeography has been complicated by the overwhelming sampling bias present in the global genomic dataset. Previous work has demonstrated the utility of metadata in addressing this bias. Specifically, the inclusion of recent travel history of SARS-CoV-2-positive individuals into extended phylogeographical models has demonstrated increased accuracy of estimates, along with proposing alternative hypotheses that were not apparent using only genomic and geographical data. However, as the availability of comprehensive epidemiological metadata is limited, many of the current estimates rely on sequence data and basic metadata (i.e. sample date and location). As the bias within the SARS-CoV-2 sequence dataset is extensive, the degree to which we can rely on results drawn from standard phylogeographical models (i.e. discrete trait analysis) that lack integrated metadata is of great concern. This is particularly important when estimates influence and inform public health policy. We compared results generated from the same dataset, using two discrete phylogeographical models: one including travel history metadata and one without. We utilized sequences from Victoria, Australia, in this case study for two unique properties. Firstly, the high proportion of cases sequenced throughout 2020 within Victoria and the rest of Australia. Secondly, individual travel history was collected from returning travellers in Victoria during the first wave (January to May) of the coronavirus disease 2019 (COVID-19) pandemic. We found that the implementation of individual travel history was essential for the estimation of SARS-CoV-2 movement via discrete phylogeography models. Without the additional information provided by the travel history metadata, the discrete trait analysis could not be fit to the data due to numerical instability. We also suggest that during the first wave of the COVID-19 pandemic in Australia, the primary driving force behind the spread of SARS-CoV-2 was viral importation from international locations. This case study demonstrates the necessity of robust genomic datasets supplemented with epidemiological metadata for generating accurate estimates from phylogeographical models in datasets that have significant sampling bias. For future work, we recommend the collection of metadata in conjunction with genomic data. Furthermore, we highlight the risk of applying phylogeographical models to biased datasets without incorporating appropriate metadata, especially when estimates influence public health policy decision making.

摘要

通过贝叶斯系统地理学推断严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的时空传播,由于全球基因组数据集中存在压倒性的采样偏差,这一过程变得复杂。之前的研究表明,元数据在解决这一偏差方面具有实用性。具体来说,将 SARS-CoV-2 阳性个体的近期旅行史纳入扩展的系统地理学模型中,可以提高估计的准确性,并提出仅使用基因组和地理数据不明显的替代假设。然而,由于全面的流行病学元数据的可用性有限,许多当前的估计依赖于序列数据和基本元数据(即样本日期和地点)。由于 SARS-CoV-2 序列数据集中的偏差很广泛,因此我们在多大程度上可以依赖缺乏综合元数据的标准系统地理学模型(即离散特征分析)得出的结果,这是非常令人担忧的。当估计影响并为公共卫生政策提供信息时,这一点尤为重要。我们比较了使用两个离散系统地理学模型从同一数据集得出的结果:一个包含旅行史元数据,另一个不包含。在这个案例研究中,我们利用了来自澳大利亚维多利亚州的序列,这是因为有两个独特的特性。首先,在维多利亚州和澳大利亚其他地区,2020 年全年对病例进行了测序的比例很高。其次,在 2019 年冠状病毒病(COVID-19)大流行的第一波(1 月至 5 月)期间,从返回维多利亚州的旅行者那里收集了个人旅行史。我们发现,对于通过离散系统地理学模型估计 SARS-CoV-2 的运动,实施个人旅行史是必不可少的。如果没有旅行史元数据提供的额外信息,由于数值不稳定性,离散特征分析无法拟合数据。我们还认为,在澳大利亚 COVID-19 大流行的第一波期间,SARS-CoV-2 传播的主要驱动力是来自国际地点的病毒输入。本案例研究表明,在具有显著采样偏差的数据集,从系统地理学模型生成准确估计需要稳健的基因组数据集,并辅以流行病学元数据。对于未来的工作,我们建议在收集基因组数据的同时收集元数据。此外,我们强调了在没有纳入适当元数据的情况下,将系统地理学模型应用于存在偏差的数据集的风险,尤其是当估计影响公共卫生政策决策时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验