Suppr超能文献

通过变更点检测来破译拓扑关联域的层次结构组织。

Deciphering hierarchical organization of topologically associated domains through change-point testing.

机构信息

Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, 100 Nicolls Rd, Stony Brook, NY, 11794, USA.

Center for System Biology, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.

出版信息

BMC Bioinformatics. 2021 Apr 10;22(1):183. doi: 10.1186/s12859-021-04113-8.

Abstract

BACKGROUND

The nucleus of eukaryotic cells spatially packages chromosomes into a hierarchical and distinct segregation that plays critical roles in maintaining transcription regulation. High-throughput methods of chromosome conformation capture, such as Hi-C, have revealed topologically associating domains (TADs) that are defined by biased chromatin interactions within them.

RESULTS

We introduce a novel method, HiCKey, to decipher hierarchical TAD structures in Hi-C data and compare them across samples. We first derive a generalized likelihood-ratio (GLR) test for detecting change-points in an interaction matrix that follows a negative binomial distribution or general mixture distribution. We then employ several optimal search strategies to decipher hierarchical TADs with p values calculated by the GLR test. Large-scale validations of simulation data show that HiCKey has good precision in recalling known TADs and is robust against random collisions of chromatin interactions. By applying HiCKey to Hi-C data of seven human cell lines, we identified multiple layers of TAD organization among them, but the vast majority had no more than four layers. In particular, we found that TAD boundaries are significantly enriched in active chromosomal regions compared to repressed regions.

CONCLUSIONS

HiCKey is optimized for processing large matrices constructed from high-resolution Hi-C experiments. The method and theoretical result of the GLR test provide a general framework for significance testing of similar experimental chromatin interaction data that may not fully follow negative binomial distributions but rather more general mixture distributions.

摘要

背景

真核细胞的核将染色体在空间上包装成一个层次分明且独特的分离状态,这对维持转录调控起着至关重要的作用。染色体构象捕获的高通量方法,如 Hi-C,揭示了拓扑关联域(TAD),这些域是由它们内部的偏向染色质相互作用定义的。

结果

我们引入了一种新的方法 HiCKey,用于破译 Hi-C 数据中的层次 TAD 结构,并在样本间进行比较。我们首先为遵循负二项分布或一般混合分布的互作矩阵推导了广义似然比(GLR)检验,以检测其中的变化点。然后,我们采用了几种最优搜索策略,根据 GLR 检验计算的 p 值来破译层次 TAD。对模拟数据的大规模验证表明,HiCKey 在召回已知 TAD 方面具有良好的精度,并且对染色质相互作用的随机碰撞具有鲁棒性。通过将 HiCKey 应用于 7 个人类细胞系的 Hi-C 数据,我们确定了它们之间存在多个层次的 TAD 组织,但绝大多数细胞系不超过四个层次。特别是,我们发现 TAD 边界在活跃的染色质区域中明显富集,而在抑制区域中则相对较少。

结论

HiCKey 优化用于处理由高分辨率 Hi-C 实验构建的大型矩阵。GLR 检验的方法和理论结果为类似的实验染色质相互作用数据的显著性检验提供了一个通用框架,这些数据可能不完全遵循负二项分布,而是更一般的混合分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c05/8037919/7bd91041f9bc/12859_2021_4113_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验