Suppr超能文献

核组编程是哺乳动物生殖系发育全能性建立的基础。

Nucleome programming is required for the foundation of totipotency in mammalian germline development.

机构信息

Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.

Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

出版信息

EMBO J. 2022 Jul 4;41(13):e110600. doi: 10.15252/embj.2022110600. Epub 2022 Jun 15.

Abstract

Germ cells are unique in engendering totipotency, yet the mechanisms underlying this capacity remain elusive. Here, we perform comprehensive and in-depth nucleome analysis of mouse germ-cell development in vitro, encompassing pluripotent precursors, primordial germ cells (PGCs) before and after epigenetic reprogramming, and spermatogonia/spermatogonial stem cells (SSCs). Although epigenetic reprogramming, including genome-wide DNA de-methylation, creates broadly open chromatin with abundant enhancer-like signatures, the augmented chromatin insulation safeguards transcriptional fidelity. These insulatory constraints are then erased en masse for spermatogonial development. Notably, despite distinguishing epigenetic programming, including global DNA re-methylation, the PGCs-to-spermatogonia/SSCs development entails further euchromatization. This accompanies substantial erasure of lamina-associated domains, generating spermatogonia/SSCs with a minimal peripheral attachment of chromatin except for pericentromeres-an architecture conserved in primates. Accordingly, faulty nucleome maturation, including persistent insulation and improper euchromatization, leads to impaired spermatogenic potential. Given that PGCs after epigenetic reprogramming serve as oogenic progenitors as well, our findings elucidate a principle for the nucleome programming that creates gametogenic progenitors in both sexes, defining a basis for nuclear totipotency.

摘要

生殖细胞在产生全能性方面具有独特性,但这种能力的机制仍难以捉摸。在这里,我们对体外培养的小鼠生殖细胞发育进行了全面深入的核组分析,涵盖多能前体细胞、表观遗传重编程前后的原始生殖细胞(PGCs)以及精原细胞/精原干细胞(SSCs)。尽管表观遗传重编程包括全基因组 DNA 去甲基化,会产生广泛开放的染色质,并具有丰富的增强子样特征,但增强的染色质隔离可确保转录保真度。然后,这些隔离限制会被大规模擦除,以进行精原细胞发育。值得注意的是,尽管 PGCs 到精原细胞/SSCs 的发育区分了表观遗传编程,包括全球 DNA 再甲基化,但进一步的常染色质化仍在进行。这伴随着核纤层相关结构域的大量消除,除了着丝粒外,精原细胞/SSCs 的染色质仅具有最小的外周附着——这种结构在灵长类动物中是保守的。因此,核组成熟的缺陷,包括持续的隔离和不当的常染色质化,会导致生殖潜能受损。鉴于表观遗传重编程后的 PGCs 也可作为卵原细胞的祖细胞,我们的研究结果阐明了一种核组编程的原则,该原则可在两性中创建生殖祖细胞,为核全能性奠定了基础。

相似文献

10
Epigenetic reprogramming of mouse germ cells toward totipotency.小鼠生殖细胞向全能性的表观遗传重编程。
Cold Spring Harb Symp Quant Biol. 2010;75:211-8. doi: 10.1101/sqb.2010.75.010. Epub 2010 Dec 7.

引用本文的文献

6
Epigenetic priming in the male germline.雄性生殖细胞中的表观遗传启动。
Curr Opin Genet Dev. 2024 Jun;86:102190. doi: 10.1016/j.gde.2024.102190. Epub 2024 Apr 11.

本文引用的文献

5
Mammalian in vitro gametogenesis.哺乳动物体外配子发生
Science. 2021 Oct;374(6563):eaaz6830. doi: 10.1126/science.aaz6830. Epub 2021 Oct 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验