Suppr超能文献

基于机器学习的蛋白质-蛋白质相互作用调节剂预测方法及其在鉴定 SARS-CoV-2 中 RBD:hACE2 相互作用的新型抑制剂中的应用。

SMMPPI: a machine learning-based approach for prediction of modulators of protein-protein interactions and its application for identification of novel inhibitors for RBD:hACE2 interactions in SARS-CoV-2.

机构信息

NII, New Delhi 110067, India.

Bioinformatics & Computational Biology research group at NII, New Delhi 110067, India.

出版信息

Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab111.

Abstract

Small molecule modulators of protein-protein interactions (PPIs) are being pursued as novel anticancer, antiviral and antimicrobial drug candidates. We have utilized a large data set of experimentally validated PPI modulators and developed machine learning classifiers for prediction of new small molecule modulators of PPI. Our analysis reveals that using random forest (RF) classifier, general PPI Modulators independent of PPI family can be predicted with ROC-AUC higher than 0.9, when training and test sets are generated by random split. The performance of the classifier on data sets very different from those used in training has also been estimated by using different state of the art protocols for removing various types of bias in division of data into training and test sets. The family-specific PPIM predictors developed in this work for 11 clinically important PPI families also have prediction accuracies of above 90% in majority of the cases. All these ML-based predictors have been implemented in a freely available software named SMMPPI for prediction of small molecule modulators for clinically relevant PPIs like RBD:hACE2, Bromodomain_Histone, BCL2-Like_BAX/BAK, LEDGF_IN, LFA_ICAM, MDM2-Like_P53, RAS_SOS1, XIAP_Smac, WDR5_MLL1, KEAP1_NRF2 and CD4_gp120. We have identified novel chemical scaffolds as inhibitors for RBD_hACE PPI involved in host cell entry of SARS-CoV-2. Docking studies for some of the compounds reveal that they can inhibit RBD_hACE2 interaction by high affinity binding to interaction hotspots on RBD. Some of these new scaffolds have also been found in SARS-CoV-2 viral growth inhibitors reported recently; however, it is not known if these molecules inhibit the entry phase.

摘要

小分子蛋白-蛋白相互作用(PPI)调节剂正被作为新型抗癌、抗病毒和抗菌药物候选物进行研究。我们利用了大量经过实验验证的 PPI 调节剂数据集,并开发了用于预测新的 PPI 小分子调节剂的机器学习分类器。我们的分析表明,使用随机森林(RF)分类器,当通过随机分割生成训练集和测试集时,可以预测与 PPI 家族无关的一般 PPI 调节剂,ROC-AUC 高于 0.9。通过使用不同的最新协议来去除数据划分到训练集和测试集中的各种类型的偏差,也评估了分类器在与训练中使用的数据非常不同的数据集上的性能。为 11 种临床重要的 PPI 家族开发的特定于家族的 PPIM 预测器在大多数情况下也具有 90%以上的预测准确性。所有这些基于 ML 的预测器都已在一个名为 SMMPPI 的免费软件中实现,用于预测与 RBD:hACE2、Bromodomain_Histone、BCL2-Like_BAX/BAK、LEDGF_IN、LFA_ICAM、MDM2-Like_P53、RAS_SOS1、XIAP_Smac、WDR5_MLL1、KEAP1_NRF2 和 CD4_gp120 等临床相关 PPI 的小分子调节剂。我们已经确定了新型化学支架作为 SARS-CoV-2 宿主细胞进入涉及的 RBD_hACE PPI 抑制剂。一些化合物的对接研究表明,它们可以通过与 RBD 上的相互作用热点高亲和力结合来抑制 RBD_hACE2 相互作用。这些新支架中的一些也在最近报道的 SARS-CoV-2 病毒生长抑制剂中发现;然而,尚不清楚这些分子是否抑制进入阶段。

相似文献

5
Targeting SARS-CoV-2 spike protein by stapled hACE2 peptides.靶向 SARS-CoV-2 刺突蛋白的订书肽 hACE2。
Chem Commun (Camb). 2021 Apr 4;57(26):3283-3286. doi: 10.1039/d0cc08387a. Epub 2021 Mar 2.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验