Pak Sangyeon
School of Electronic and Electrical Engineering, Hongik University, Seoul 04066, Korea.
Nanomaterials (Basel). 2022 Aug 23;12(17):2893. doi: 10.3390/nano12172893.
Electronic devices based on two-dimensional (2D) MoS show great promise as future building blocks in electronic circuits due to their outstanding electrical, optical, and mechanical properties. Despite the high importance of doping of these 2D materials for designing field-effect transistors (FETs) and logic circuits, a simple and controllable doping methodology still needs to be developed in order to tailor their device properties. Here, we found a simple and effective chemical doping strategy for MoS monolayers using CuCl solution. The CuCl solution was simply spin-coated on MoS with different concentrations under ambient conditions for effectively p-doping the MoS monolayers. This was systematically analyzed using various spectroscopic measurements using Raman, photoluminescence, and X-ray photoelectron and electrical measurements by observing the change in transfer and output characteristics of MoS FETs before and after CuCl doping, showing effective p-type doping behaviors as observed through the shift of threshold voltages (Vth) and reducing the ON and OFF current level. Our results open the possibility of providing effective and simple doping strategies for 2D materials and other nanomaterials without causing any detrimental damage.
基于二维(2D)二硫化钼(MoS)的电子器件因其出色的电学、光学和机械性能,在未来电子电路构建模块方面展现出巨大潜力。尽管这些二维材料的掺杂对于设计场效应晶体管(FET)和逻辑电路至关重要,但仍需要开发一种简单且可控的掺杂方法来调整其器件性能。在此,我们发现了一种使用氯化铜(CuCl)溶液对二硫化钼单层进行简单有效化学掺杂的策略。在环境条件下,将不同浓度的氯化铜溶液简单地旋涂在二硫化钼上,以有效地对二硫化钼单层进行p型掺杂。通过拉曼光谱、光致发光光谱、X射线光电子能谱等各种光谱测量方法以及电学测量方法,观察氯化铜掺杂前后二硫化钼场效应晶体管转移和输出特性的变化,进行了系统分析,结果表明通过阈值电压(Vth)的偏移以及降低开态和关态电流水平,呈现出有效的p型掺杂行为。我们的结果为二维材料和其他纳米材料提供有效且简单的掺杂策略开辟了可能性,且不会造成任何有害损伤。