Am J Ophthalmol. 2021 Aug;228:134-141. doi: 10.1016/j.ajo.2021.03.042. Epub 2021 May 11.
To determine classification criteria for toxoplasmic retinitis.
Machine learning of cases with toxoplasmic retinitis and 4 other infectious posterior uveitides / panuveitides.
Cases of infectious posterior uveitides / panuveitides were collected in an informatics-designed preliminary database, and a final database was constructed of cases achieving supermajority agreement on diagnosis, using formal consensus techniques. Cases were split into a training set and a validation set. Machine learning using multinomial logistic regression was used on the training set to determine a parsimonious set of criteria that minimized the misclassification rate among the infectious posterior uveitides / panuveitides. The resulting criteria were evaluated on the validation set.
Eight hundred three cases of infectious posterior uveitides / panuveitides, including 174 cases of toxoplasmic retinitis, were evaluated by machine learning. Key criteria for toxoplasmic retinitis included focal or paucifocal necrotizing retinitis and either positive polymerase chain reaction assay for Toxoplasma gondii from an intraocular specimen or the characteristic clinical picture of a round or oval retinitis lesion proximal to a hyperpigmented and/or atrophic chorioretinal scar. Overall accuracy for infectious posterior uveitides / panuveitides was 92.1% in the training set and 93.3% (95% confidence interval 88.2, 96.3) in the validation set. The misclassification rates for toxoplasmic retinitis were 8.2% in the training set and 10% in the validation set.
The criteria for toxoplasmic retinitis had a low misclassification rate and seemed to perform sufficiently well for use in clinical and translational research.
确定弓形虫性视网膜炎的分类标准。
对弓形虫性视网膜炎及其他4种感染性后葡萄膜炎/全葡萄膜炎病例进行机器学习。
在一个信息学设计的初步数据库中收集感染性后葡萄膜炎/全葡萄膜炎病例,并使用正式的共识技术构建一个最终数据库,该数据库包含在诊断上达成绝大多数一致意见的病例。病例被分为训练集和验证集。对训练集使用多项逻辑回归进行机器学习,以确定一组简约的标准,使感染性后葡萄膜炎/全葡萄膜炎中的错误分类率降至最低。在验证集上对所得标准进行评估。
通过机器学习评估了803例感染性后葡萄膜炎/全葡萄膜炎病例,其中包括174例弓形虫性视网膜炎。弓形虫性视网膜炎的关键标准包括局灶性或多灶性坏死性视网膜炎,以及眼内标本中弓形虫聚合酶链反应检测呈阳性,或色素沉着和/或萎缩性脉络膜视网膜瘢痕附近有圆形或椭圆形视网膜炎病变这一特征性临床表现。感染性后葡萄膜炎/全葡萄膜炎在训练集中的总体准确率为92.1%,在验证集中为93.3%(95%置信区间88.2, 96.3)。弓形虫性视网膜炎在训练集中的错误分类率为8.2%,在验证集中为10%。
弓形虫性视网膜炎的标准错误分类率较低,似乎在临床和转化研究中表现良好。