Suppr超能文献

基于淋巴细胞计数、尿素、C 反应蛋白、年龄和性别(LUCAS)与胸部 X 射线的稳健 COVID-19 死亡率预测计算器。

A robust COVID-19 mortality prediction calculator based on Lymphocyte count, Urea, C-Reactive Protein, Age and Sex (LUCAS) with chest X-rays.

机构信息

School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, UK.

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK.

出版信息

Sci Rep. 2022 Oct 29;12(1):18220. doi: 10.1038/s41598-022-21803-2.

Abstract

There have been numerous risk tools developed to enable triaging of SARS-CoV-2 positive patients with diverse levels of complexity. Here we presented a simplified risk-tool based on minimal parameters and chest X-ray (CXR) image data that predicts the survival of adult SARS-CoV-2 positive patients at hospital admission. We analysed the NCCID database of patient blood variables and CXR images from 19 hospitals across the UK using multivariable logistic regression. The initial dataset was non-randomly split between development and internal validation dataset with 1434 and 310 SARS-CoV-2 positive patients, respectively. External validation of the final model was conducted on 741 Accident and Emergency (A&E) admissions with suspected SARS-CoV-2 infection from a separate NHS Trust. The LUCAS mortality score included five strongest predictors (Lymphocyte count, Urea, C-reactive protein, Age, Sex), which are available at any point of care with rapid turnaround of results. Our simple multivariable logistic model showed high discrimination for fatal outcome with the area under the receiving operating characteristics curve (AUC-ROC) in development cohort 0.765 (95% confidence interval (CI): 0.738-0.790), in internal validation cohort 0.744 (CI: 0.673-0.808), and in external validation cohort 0.752 (CI: 0.713-0.787). The discriminatory power of LUCAS increased slightly when including the CXR image data. LUCAS can be used to obtain valid predictions of mortality in patients within 60 days of SARS-CoV-2 RT-PCR results into low, moderate, high, or very high risk of fatality.

摘要

已经开发出许多风险工具,以用于对具有不同复杂程度的 SARS-CoV-2 阳性患者进行分诊。在这里,我们提出了一种基于最小参数和胸部 X 光(CXR)图像数据的简化风险工具,该工具可预测成年 SARS-CoV-2 阳性患者入院时的生存率。我们使用多变量逻辑回归分析了来自英国 19 家医院的患者血液变量和 CXR 图像的 NCCID 数据库。初始数据集在开发和内部验证数据集之间进行了非随机划分,分别有 1434 名和 310 名 SARS-CoV-2 阳性患者。使用来自另一家 NHS 信托基金的 741 例疑似 SARS-CoV-2 感染的急诊(A&E)入院患者对最终模型进行了外部验证。LUCAS 死亡率评分包含五个最强预测因素(淋巴细胞计数,尿素,C 反应蛋白,年龄,性别),这些因素在任何护理点都可用,并且可以快速获得结果。我们的简单多变量逻辑模型在发展队列中的接受者工作特征曲线(AUC-ROC)下面积为 0.765(95%置信区间(CI):0.738-0.790),在内部验证队列中为 0.744(CI:0.673-0.808),在外部验证队列中为 0.752(CI:0.713-0.787),对于致命结果具有很高的区分度。当包括 CXR 图像数据时,LUCAS 的区分能力略有提高。LUCAS 可用于在 SARS-CoV-2 RT-PCR 结果后 60 天内获得患者死亡率的有效预测,将死亡率分为低,中,高或极高风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232d/9617974/a10822584257/41598_2022_21803_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验