Suppr超能文献

RIG-I 和 XRCC4 的相互调节将 DNA 修复与 RIG-I 免疫信号联系起来。

Reciprocal regulation of RIG-I and XRCC4 connects DNA repair with RIG-I immune signaling.

机构信息

Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.

Department of Oncology, Mayo Clinic, Rochester, MN, USA.

出版信息

Nat Commun. 2021 Apr 12;12(1):2187. doi: 10.1038/s41467-021-22484-7.

Abstract

The RNA-sensing pathway contributes to type I interferon (IFN) production induced by DNA damaging agents. However, the potential involvement of RNA sensors in DNA repair is unknown. Here, we found that retinoic acid-inducible gene I (RIG-I), a key cytosolic RNA sensor that recognizes RNA virus and initiates the MAVS-IRF3-type I IFN signaling cascade, is recruited to double-stranded breaks (DSBs) and suppresses non-homologous end joining (NHEJ). Mechanistically, RIG-I interacts with XRCC4, and the RIG-I/XRCC4 interaction impedes the formation of XRCC4/LIG4/XLF complex at DSBs. High expression of RIG-I compromises DNA repair and sensitizes cancer cells to irradiation treatment. In contrast, depletion of RIG-I renders cells resistant to irradiation in vitro and in vivo. In addition, this mechanism suggests a protective role of RIG-I in hindering retrovirus integration into the host genome by suppressing the NHEJ pathway. Reciprocally, XRCC4, while suppressed for its DNA repair function, has a critical role in RIG-I immune signaling through RIG-I interaction. XRCC4 promotes RIG-I signaling by enhancing oligomerization and ubiquitination of RIG-I, thereby suppressing RNA virus replication in host cells. In vivo, silencing XRCC4 in mouse lung promotes influenza virus replication in mice and these mice display faster body weight loss, poorer survival, and a greater degree of lung injury caused by influenza virus infection. This reciprocal regulation of RIG-I and XRCC4 reveals a new function of RIG-I in suppressing DNA repair and virus integration into the host genome, and meanwhile endues XRCC4 with a crucial role in potentiating innate immune response, thereby helping host to prevail in the battle against virus.

摘要

RNA 感应途径有助于 DNA 损伤剂诱导的 I 型干扰素(IFN)产生。然而,RNA 传感器在 DNA 修复中的潜在作用尚不清楚。在这里,我们发现,视黄酸诱导基因 I(RIG-I),一种识别 RNA 病毒并启动 MAVS-IRF3 型 I IFN 信号级联的关键细胞质 RNA 传感器,被募集到双链断裂(DSB)处,并抑制非同源末端连接(NHEJ)。在机制上,RIG-I 与 XRCC4 相互作用,并且 RIG-I/XRCC4 相互作用阻碍 XRCC4/LIG4/XLF 复合物在 DSB 处的形成。RIG-I 的高表达会损害 DNA 修复,并使癌细胞对辐射治疗敏感。相反,RIG-I 的耗竭使细胞在体外和体内对辐射产生抗性。此外,该机制表明 RIG-I 通过抑制 NHEJ 途径,在阻止逆转录病毒整合到宿主基因组中具有保护作用。相反,虽然 XRCC4 的 DNA 修复功能受到抑制,但通过与 RIG-I 的相互作用,在 RIG-I 免疫信号中具有关键作用。XRCC4 通过增强 RIG-I 的寡聚化和泛素化来促进 RIG-I 信号,从而抑制宿主细胞中的 RNA 病毒复制。在体内,沉默小鼠肺中的 XRCC4 会促进流感病毒在小鼠中的复制,这些小鼠表现出更快的体重减轻、存活率降低以及由流感病毒感染引起的更大程度的肺损伤。RIG-I 和 XRCC4 的这种相互调节揭示了 RIG-I 在抑制 DNA 修复和病毒整合到宿主基因组中的新功能,同时使 XRCC4 在增强先天免疫反应中发挥关键作用,从而帮助宿主在与病毒的战斗中获胜。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35a9/8041803/9894ccea146d/41467_2021_22484_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验