Laboratoire des Systèmes Perceptifs, Paris, CNRS UMR 8248, France.
Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, PSL, France.
J Neural Eng. 2021 May 4;18(4). doi: 10.1088/1741-2552/abf771.
An auditory stimulus can be related to the brain response that it evokes by a stimulus-response model fit to the data. This offers insight into perceptual processes within the brain and is also of potential use for devices such as brain computer interfaces (BCIs). The quality of the model can be quantified by measuring the fit with a regression problem, or by applying it to a classification task and measuring its performance.Here we focus on a(MM) task that entails deciding whether a segment of brain signal matches, via a model, the auditory stimulus that evoked it.. Using these metrics, we describe a range of models of increasing complexity that we compare to methods in the literature, showing state-of-the-art performance. We document in detail one particular implementation, calibrated on a publicly-available database, that can serve as a robust reference to evaluate future developments.The MM task allows stimulus-response models to be evaluated in the limit of very high model accuracy, making it an attractive alternative to the more commonly used task of auditory attention detection. The MM task does not require class labels, so it is immune to mislabeling, and it is applicable to data recorded in listening scenarios with only one sound source, thus it is cheap to obtain large quantities of training and testing data. Performance metrics from this task, associated with regression accuracy, provide complementary insights into the relation between stimulus and response, as well as information about discriminatory power directly applicable to BCI applications.
可以通过将数据拟合到刺激-反应模型来将听觉刺激与它引起的大脑反应相关联。这可以深入了解大脑中的感知过程,并且对于诸如脑机接口 (BCI) 之类的设备也具有潜在的用途。通过回归问题衡量模型的拟合程度,或者通过将其应用于分类任务并衡量其性能,可以量化模型的质量。
在这里,我们专注于(MM)任务,该任务涉及通过模型确定大脑信号的片段是否与引起它的听觉刺激匹配。使用这些指标,我们描述了一系列越来越复杂的模型,将其与文献中的方法进行了比较,展示了最先进的性能。我们详细记录了一个特定的实现,该实现经过了公开可用数据库的校准,可以作为评估未来发展的可靠参考。
MM 任务允许在非常高的模型精度极限下评估刺激-反应模型,因此它是比更常用的听觉注意检测任务更具吸引力的替代方案。MM 任务不需要类别标签,因此不受标签错误的影响,并且适用于仅具有一个声源的聆听场景中的数据记录,因此可以廉价地获取大量的训练和测试数据。来自该任务的性能指标与回归准确性相关,为刺激与反应之间的关系提供了互补的见解,并提供了有关直接适用于 BCI 应用的区分能力的信息。