Suppr超能文献

用于模拟南非对COVID-19应对措施的系统动力学方法:一种“如果……会怎样”的情景分析。

Systems dynamics approach for modelling South Africa's response to COVID-19: A "what if" scenario.

作者信息

Mutanga Shingirirai Savious, Ngungu Mercy, Tshililo Fhulufhelo Phillis, Kaggwa Martin

机构信息

Council for Scientific and Industrial Research (CSIR), Smart Place Cluster, Holistic Climate Change-Climate Services Group, Pretoria.

Human Sciences Research Council Developmental, Capable and Ethical States, Pretoria.

出版信息

J Public Health Res. 2021 Feb 1;10(1):1897. doi: 10.4081/jphr.2021.1897.

Abstract

BACKGROUND

Many countries in the world are still struggling to control COVID-19 pandemic. As of April 28, 2020, South Africa reported the highest number of COVID-19 cases in Sub-Sahara Africa. The country took aggressive steps to control the spread of the virus including setting a national command team for COVID-19 and putting the country on a complete lockdown for more than 100 days. Evidence across most countries has shown that, it is vital to monitor the progression of pandemics and assess the effects of various public health measures, such as lockdowns. Countries need to have scientific tools to assist in monitoring and assessing the effectiveness of mitigation interventions. The objective of this study was thus to assess the extent to which a systems dynamics model can forecast COVID-19 infections in South Africa and be a useful tool in evaluating government interventions to manage the epidemic through 'what if' simulations.

DESIGN AND METHODS

This study presents a systems dynamics model (SD) of the COVID-19 infection in South Africa, as one of such tools. The development of the SD model in this study is grounded in design science research which fundamentally builds on prior research of modelling complex systems.

RESULTS

The SD model satisfactorily replicates the general trend of COVID-19 infections and recovery for South Africa within the first 100 days of the pandemic. The model further confirms that the decision to lockdown the country was a right one, otherwise the country's health capacity would have been overwhelmed. Going forward, the model predicts that the level of infection in the country will peak towards the last quarter of 2020, and thereafter start to decline.  Conclusions: Ultimately, the model structure and simulations suggest that a systems dynamics model can be a useful tool in monitoring, predicting and testing interventions to manage COVID-19 with an acceptable margin of error. Moreover, the model can be developed further to include more variables as more facts on the COVID-19 emerge.

摘要

背景

世界上许多国家仍在努力控制新冠疫情。截至2020年4月28日,南非报告的新冠病例数在撒哈拉以南非洲地区最多。该国采取了积极措施来控制病毒传播,包括设立新冠疫情国家指挥团队,并实施了长达100多天的全面封锁。大多数国家的证据表明,监测疫情进展并评估各种公共卫生措施(如封锁)的效果至关重要。各国需要科学工具来协助监测和评估缓解干预措施的有效性。因此,本研究的目的是评估系统动力学模型在预测南非新冠感染情况方面的程度,并成为通过“假设分析”模拟来评估政府管理疫情干预措施的有用工具。

设计与方法

本研究提出了一个南非新冠感染的系统动力学模型(SD),作为此类工具之一。本研究中SD模型的开发基于设计科学研究,该研究从根本上建立在对复杂系统建模的先前研究基础之上。

结果

SD模型令人满意地复制了南非在疫情前100天内新冠感染和康复的总体趋势。该模型进一步证实,封锁国家的决定是正确的,否则该国的医疗能力将不堪重负。展望未来,该模型预测该国的感染水平将在2020年最后一个季度达到峰值,此后开始下降。结论:最终,模型结构和模拟表明,系统动力学模型可以成为监测、预测和测试管理新冠疫情干预措施的有用工具,且误差范围可接受。此外,随着更多关于新冠疫情的事实出现,该模型可以进一步开发以纳入更多变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a5/7883018/6185341342f0/jphr-10-1-1897-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验