Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
Biointeractions and Plant Health, Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
BMC Genomics. 2021 Apr 14;22(1):265. doi: 10.1186/s12864-021-07583-5.
Bacterial plant pathogens of the Pectobacterium genus are responsible for a wide spectrum of diseases in plants, including important crops such as potato, tomato, lettuce, and banana. Investigation of the genetic diversity underlying virulence and host specificity can be performed at genome level by using a comprehensive comparative approach called pangenomics. A pangenomic approach, using newly developed functionalities in PanTools, was applied to analyze the complex phylogeny of the Pectobacterium genus. We specifically used the pangenome to investigate genetic differences between virulent and avirulent strains of P. brasiliense, a potato blackleg causing species dominantly present in Western Europe.
Here we generated a multilevel pangenome for Pectobacterium, comprising 197 strains across 19 species, including type strains, with a focus on P. brasiliense. The extensive phylogenetic analysis of the Pectobacterium genus showed robust distinct clades, with most detail provided by 452,388 parsimony-informative single-nucleotide polymorphisms identified in single-copy orthologs. The average Pectobacterium genome consists of 47% core genes, 1% unique genes, and 52% accessory genes. Using the pangenome, we zoomed in on differences between virulent and avirulent P. brasiliense strains and identified 86 genes associated to virulent strains. We found that the organization of genes is highly structured and linked with gene conservation, function, and transcriptional orientation.
The pangenome analysis demonstrates that evolution in Pectobacteria is a highly dynamic process, including gene acquisitions partly in clusters, genome rearrangements, and loss of genes. Pectobacterium species are typically not characterized by a set of species-specific genes, but instead present themselves using new gene combinations from the shared gene pool. A multilevel pangenomic approach, fusing DNA, protein, biological function, taxonomic group, and phenotypes, facilitates studies in a flexible taxonomic context.
果胶杆菌属的细菌植物病原体可导致植物发生广泛的疾病,包括马铃薯、番茄、生菜和香蕉等重要作物。通过使用称为泛基因组学的全面比较方法,可以在基因组水平上研究毒力和宿主特异性的遗传多样性。应用泛基因组学方法,利用 PanTools 中开发的新功能,分析了果胶杆菌属的复杂系统发育。我们专门使用泛基因组来研究 Pectobacterium brasiliense(一种主要存在于西欧的马铃薯黑胫病致病种)的毒力和无毒菌株之间的遗传差异。
我们针对果胶杆菌属生成了一个多层次的泛基因组,包含 19 个种的 197 株菌,包括模式菌株,重点是 P. brasiliense。果胶杆菌属的广泛系统发育分析显示出稳健的独特分支,其中最详细的信息由单拷贝直系同源物中鉴定的 452388 个简约信息单核苷酸多态性提供。果胶杆菌属的平均基因组由 47%的核心基因、1%的独特基因和 52%的辅助基因组成。通过使用泛基因组,我们深入研究了毒力和无毒 P. brasiliense 菌株之间的差异,并鉴定了与毒力菌株相关的 86 个基因。我们发现基因的组织高度结构化,与基因保守性、功能和转录方向相关联。
泛基因组分析表明,果胶杆菌属的进化是一个高度动态的过程,包括部分簇的基因获取、基因组重排和基因丢失。果胶杆菌属的物种通常不是由一组物种特异性基因来定义,而是通过共享基因库中的新基因组合来呈现。多层次泛基因组方法融合了 DNA、蛋白质、生物学功能、分类群和表型,促进了在灵活的分类学背景下的研究。