Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland.
Mol Syst Biol. 2021 Apr;17(4):e10064. doi: 10.15252/msb.202010064.
Microorganisms adjust metabolic activity to cope with diverse environments. While many studies have provided insights into how individual pathways are regulated, the mechanisms that give rise to coordinated metabolic responses are poorly understood. Here, we identify the regulatory mechanisms that coordinate catabolism and anabolism in Escherichia coli. Integrating protein, metabolite, and flux changes in genetically implemented catabolic or anabolic limitations, we show that combined global and local mechanisms coordinate the response to metabolic limitations. To allocate proteomic resources between catabolism and anabolism, E. coli uses a simple global gene regulatory program. Surprisingly, this program is largely implemented by a single transcription factor, Crp, which directly activates the expression of catabolic enzymes and indirectly reduces the expression of anabolic enzymes by passively sequestering cellular resources needed for their synthesis. However, metabolic fluxes are not controlled by this regulatory program alone; instead, fluxes are adjusted mostly through passive changes in the local metabolite concentrations. These mechanisms constitute a simple but effective global regulatory program that coarsely partitions resources between different parts of metabolism while ensuring robust coordination of individual metabolic reactions.
微生物会调整代谢活动以适应不同的环境。虽然许多研究已经深入了解了单个途径是如何被调控的,但对于导致协调代谢反应的机制仍知之甚少。在这里,我们确定了协调大肠杆菌分解代谢和合成代谢的调控机制。通过整合遗传实施的分解代谢或合成代谢限制中的蛋白质、代谢物和通量变化,我们表明,综合的全局和局部机制协调了对代谢限制的反应。为了在分解代谢和合成代谢之间分配蛋白质组资源,大肠杆菌使用了一个简单的全局基因调控程序。令人惊讶的是,这个程序主要是由单个转录因子 Crp 来执行的,它直接激活分解代谢酶的表达,并通过被动隔离合成这些酶所需的细胞资源来间接降低合成代谢酶的表达。然而,代谢通量并不是仅由这个调控程序控制的;相反,通量主要通过局部代谢物浓度的被动变化来调节。这些机制构成了一个简单但有效的全局调控程序,它在不同代谢途径之间进行粗略的资源划分,同时确保了单个代谢反应的协调。