Suppr超能文献

多重免疫组织化学和数字病理学作为黑色素瘤下一代病理学的基础:方法学比较与未来临床应用

Multiplexed Immunohistochemistry and Digital Pathology as the Foundation for Next-Generation Pathology in Melanoma: Methodological Comparison and Future Clinical Applications.

作者信息

Van Herck Yannick, Antoranz Asier, Andhari Madhavi Dipak, Milli Giorgia, Bechter Oliver, De Smet Frederik, Bosisio Francesca Maria

机构信息

Department of Oncology, KU Leuven, Leuven, Belgium.

Laboratory for Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.

出版信息

Front Oncol. 2021 Mar 29;11:636681. doi: 10.3389/fonc.2021.636681. eCollection 2021.

Abstract

The state-of-the-art for melanoma treatment has recently witnessed an enormous revolution, evolving from a chemotherapeutic, "one-drug-for-all" approach, to a tailored molecular- and immunological-based approach with the potential to make personalized therapy a reality. Nevertheless, methods still have to improve a lot before these can reliably characterize all the tumoral features that make each patient unique. While the clinical introduction of next-generation sequencing has made it possible to match mutational profiles to specific targeted therapies, improving response rates to immunotherapy will similarly require a deep understanding of the immune microenvironment and the specific contribution of each component in a patient-specific way. Recent advancements in artificial intelligence and single-cell profiling of resected tumor samples are paving the way for this challenging task. In this review, we provide an overview of the state-of-the-art in artificial intelligence and multiplexed immunohistochemistry in pathology, and how these bear the potential to improve diagnostics and therapy matching in melanoma. A major asset of in-situ single-cell profiling methods is that these preserve the spatial distribution of the cells in the tissue, allowing researchers to not only determine the cellular composition of the tumoral microenvironment, but also study tissue sociology, making inferences about specific cell-cell interactions and visualizing distinctive cellular architectures - all features that have an impact on anti-tumoral response rates. Despite the many advantages, the introduction of these approaches requires the digitization of tissue slides and the development of standardized analysis pipelines which pose substantial challenges that need to be addressed before these can enter clinical routine.

摘要

黑色素瘤治疗的最新技术最近经历了一场巨大的变革,从化疗的“一刀切”方法,发展到基于分子和免疫的定制方法,有可能使个性化治疗成为现实。然而,在这些方法能够可靠地表征使每个患者独一无二的所有肿瘤特征之前,仍有很大的改进空间。虽然下一代测序的临床应用使得将突变谱与特定的靶向治疗相匹配成为可能,但提高免疫治疗的反应率同样需要以患者特异性的方式深入了解免疫微环境以及每个组成部分的具体作用。人工智能和切除肿瘤样本的单细胞分析的最新进展正在为这项具有挑战性的任务铺平道路。在这篇综述中,我们概述了病理学中人工智能和多重免疫组织化学的最新技术水平,以及它们如何有潜力改善黑色素瘤的诊断和治疗匹配。原位单细胞分析方法的一个主要优点是,这些方法保留了组织中细胞的空间分布,使研究人员不仅能够确定肿瘤微环境的细胞组成,还能研究组织社会学,推断特定的细胞间相互作用,并可视化独特的细胞结构——所有这些特征都会影响抗肿瘤反应率。尽管有许多优点,但引入这些方法需要对组织切片进行数字化处理,并开发标准化的分析流程,在这些方法能够进入临床常规应用之前,这些都是需要解决的重大挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/307f/8040928/6e527830873e/fonc-11-636681-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验