Suppr超能文献

经典表型分析和深度学习在高粱气孔密度和面积的遗传控制方面达成一致。

Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum.

机构信息

Department of Agronomy, Kansas State University, Manhattan, Kansas 66506, USA.

Department of Computer Science, Kansas State University, Manhattan, Kansas 66506, USA.

出版信息

Plant Physiol. 2021 Jul 6;186(3):1562-1579. doi: 10.1093/plphys/kiab174.

Abstract

Stomatal density (SD) and stomatal complex area (SCA) are important traits that regulate gas exchange and abiotic stress response in plants. Despite sorghum (Sorghum bicolor) adaptation to arid conditions, the genetic potential of stomata-related traits remains unexplored due to challenges in available phenotyping methods. Hence, identifying loci that control stomatal traits is fundamental to designing strategies to breed sorghum with optimized stomatal regulation. We implemented both classical and deep learning methods to characterize genetic diversity in 311 grain sorghum accessions for stomatal traits at two different field environments. Nearly 12,000 images collected from abaxial (Ab) and adaxial (Ad) leaf surfaces revealed substantial variation in stomatal traits. Our study demonstrated significant accuracy between manual and deep learning methods in predicting SD and SCA. In sorghum, SD was 32%-39% greater on the Ab versus the Ad surface, while SCA on the Ab surface was 2%-5% smaller than on the Ad surface. Genome-Wide Association Study identified 71 genetic loci (38 were environment-specific) with significant genotype to phenotype associations for stomatal traits. Putative causal genes underlying the phenotypic variation were identified. Accessions with similar SCA but carrying contrasting haplotypes for SD were tested for stomatal conductance and carbon assimilation under field conditions. Our findings provide a foundation for further studies on the genetic and molecular mechanisms controlling stomata patterning and regulation in sorghum. An integrated physiological, deep learning, and genomic approach allowed us to unravel the genetic control of natural variation in stomata traits in sorghum, which can be applied to other plants.

摘要

气孔密度(SD)和气孔复合体面积(SCA)是调节植物气体交换和非生物胁迫响应的重要特征。尽管高粱(Sorghum bicolor)适应干旱条件,但由于现有表型方法的挑战,气孔相关性状的遗传潜力仍未得到探索。因此,鉴定控制气孔性状的基因座对于设计优化高粱气孔调节的育种策略至关重要。我们采用经典和深度学习方法,在两个不同的田间环境下对 311 份高粱品种进行气孔性状的遗传多样性分析。从叶背(Ab)和叶表(Ad)表面采集了近 12000 张图像,揭示了气孔性状的显著变异性。我们的研究表明,在预测 SD 和 SCA 方面,手动和深度学习方法之间具有显著的准确性。在高粱中,Ab 表面的 SD 比 Ad 表面高 32%-39%,而 Ab 表面的 SCA 比 Ad 表面小 2%-5%。全基因组关联研究鉴定了 71 个与气孔性状显著相关的遗传位点(38 个是环境特异性的)。确定了潜在的与表型变异相关的候选基因。具有相似 SCA 但 SD 携带不同单倍型的品种在田间条件下进行了气孔导度和碳同化的测试。我们的研究结果为进一步研究控制高粱气孔形态发生和调节的遗传和分子机制提供了基础。综合生理学、深度学习和基因组学方法,我们揭示了高粱气孔性状自然变异的遗传控制,这可应用于其他植物。

相似文献

引用本文的文献

7
Stomatal development in the changing climate.气候变化下的气孔发育。
Development. 2024 Oct 15;151(20). doi: 10.1242/dev.202681. Epub 2024 Oct 21.

本文引用的文献

5
Regulation of stomatal development by stomatal lineage miRNAs.气孔谱系 miRNA 对气孔发育的调控。
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):6237-6245. doi: 10.1073/pnas.1919722117. Epub 2020 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验