Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Program in Ecology, Evolution, and Conservation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
J Exp Bot. 2024 Nov 15;75(21):6683-6703. doi: 10.1093/jxb/erae395.
Artificial intelligence and machine learning (AI/ML) can be used to automatically analyze large image datasets. One valuable application of this approach is estimation of plant trait data contained within images. Here we review 39 papers that describe the development and/or application of such models for estimation of stomatal traits from epidermal micrographs. In doing so, we hope to provide plant biologists with a foundational understanding of AI/ML and summarize the current capabilities and limitations of published tools. While most models show human-level performance for stomatal density (SD) quantification at superhuman speed, they are often likely to be limited in how broadly they can be applied across phenotypic diversity associated with genetic, environmental, or developmental variation. Other models can make predictions across greater phenotypic diversity and/or additional stomatal/epidermal traits, but require significantly greater time investment to generate ground-truth data. We discuss the challenges and opportunities presented by AI/ML-enabled computer vision analysis, and make recommendations for future work to advance accelerated stomatal phenotyping.
人工智能和机器学习 (AI/ML) 可用于自动分析大型图像数据集。这种方法的一个有价值的应用是估计图像中包含的植物性状数据。在这里,我们回顾了 39 篇描述此类模型的开发和/或应用的论文,这些模型用于从表皮显微照片估计气孔性状。通过这样做,我们希望为植物生物学家提供对 AI/ML 的基本理解,并总结已发表工具的当前功能和局限性。虽然大多数模型在超人类速度下对气孔密度 (SD) 的量化表现出人类水平的性能,但它们通常可能受到限制,无法广泛应用于与遗传、环境或发育变化相关的表型多样性。其他模型可以在更大的表型多样性和/或其他气孔/表皮性状上进行预测,但需要投入大量时间来生成真实数据。我们讨论了由 AI/ML 支持的计算机视觉分析带来的挑战和机遇,并为推进加速气孔表型分析提出了未来工作的建议。