School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA.
Chem Senses. 2021 Jan 1;46. doi: 10.1093/chemse/bjab020.
Color and pitch perception are largely understandable from characteristics of physical stimuli: the wavelengths of light and sound waves, respectively. By contrast, understanding olfactory percepts from odorous stimuli (volatile molecules) is much more challenging. No intuitive set of molecular features is up to the task. Here in Chemical Senses, the Ray lab reports using a predictive modeling framework-first breaking molecular structure into thousands of features and then using this to train a predictive statistical model on a wide range of perceptual descriptors-to create a tool for predicting the odor character of hundreds of thousands of available but previously uncharacterized molecules (Kowalewski et al. 2021). This will allow future investigators to representatively sample the space of odorous molecules as well as identify previously unknown odorants with a target odor character. Here, I put this work into the context of other modeling efforts and highlight the urgent need for large new datasets and transparent benchmarks for the field to make and evaluate modeling breakthroughs, respectively.
分别是光的波长和声波的波长。相比之下,从气味刺激(挥发性分子)中理解嗅觉感知要困难得多。没有一套直观的分子特征能够胜任这项任务。在《Chemical Senses》杂志上,Ray 实验室报告了使用预测建模框架的情况——首先将分子结构分解成数千个特征,然后使用这些特征在广泛的感知描述符上训练预测统计模型——创建了一种工具,可以预测数十万种已有的但尚未描述的分子的气味特征(Kowalewski 等人,2021 年)。这将使未来的研究人员能够有代表性地对气味分子空间进行采样,并识别具有目标气味特征的以前未知的气味剂。在这里,我将这项工作置于其他建模工作的背景下,并强调了该领域分别需要大型新数据集和透明基准来实现和评估建模突破的迫切需求。