Suppr超能文献

利用深度学习预测未来 Humphrey 视野。

Forecasting future Humphrey Visual Fields using deep learning.

机构信息

Department of Ophthalmology, University of Washington, Seattle, WA, United States of America.

NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital, Moorfields Eye Hospital NHS Foundation Trust and University College London (UCL) Institute of Ophthalmology, London, United Kingdom.

出版信息

PLoS One. 2019 Apr 5;14(4):e0214875. doi: 10.1371/journal.pone.0214875. eCollection 2019.

Abstract

PURPOSE

To determine if deep learning networks could be trained to forecast future 24-2 Humphrey Visual Fields (HVFs).

METHODS

All data points from consecutive 24-2 HVFs from 1998 to 2018 were extracted from a university database. Ten-fold cross validation with a held out test set was used to develop the three main phases of model development: model architecture selection, dataset combination selection, and time-interval model training with transfer learning, to train a deep learning artificial neural network capable of generating a point-wise visual field prediction. The point-wise mean absolute error (PMAE) and difference in Mean Deviation (MD) between predicted and actual future HVF were calculated.

RESULTS

More than 1.7 million perimetry points were extracted to the hundredth decibel from 32,443 24-2 HVFs. The best performing model with 20 million trainable parameters, CascadeNet-5, was selected. The overall point-wise PMAE for the test set was 2.47 dB (95% CI: 2.45 dB to 2.48 dB), and deep learning showed a statistically significant improvement over linear models. The 100 fully trained models successfully predicted future HVFs in glaucomatous eyes up to 5.5 years in the future with a correlation of 0.92 between the MD of predicted and actual future HVF and an average difference of 0.41 dB.

CONCLUSIONS

Using unfiltered real-world datasets, deep learning networks show the ability to not only learn spatio-temporal HVF changes but also to generate predictions for future HVFs up to 5.5 years, given only a single HVF.

摘要

目的

确定深度学习网络是否可以接受训练,以预测未来 24-2 小时 Humphrey 视野(HVF)。

方法

从大学数据库中提取了 1998 年至 2018 年连续的 24-2 HVF 的所有数据点。采用十折交叉验证和保留测试集的方法,开发了模型开发的三个主要阶段:模型架构选择、数据集组合选择以及使用迁移学习进行时间间隔模型训练,以训练能够生成逐点视野预测的深度学习人工神经网络。计算了逐点平均绝对误差(PMAE)和预测与实际未来 HVF 之间的平均偏差(MD)差异。

结果

从 32443 个 24-2 HVF 中提取了超过 170 万个千分位视敏度值。选择了性能最佳的具有 2000 万个可训练参数的级联网络-5(CascadeNet-5)模型。测试集的总体逐点 PMAE 为 2.47 dB(95%CI:2.45 dB 至 2.48 dB),深度学习显示出与线性模型相比具有统计学意义的改进。100 个完全训练的模型成功预测了未来 5.5 年内青光眼眼的未来 HVF,预测和实际未来 HVF 的 MD 之间的相关性为 0.92,平均差异为 0.41 dB。

结论

使用未经过滤的真实世界数据集,深度学习网络不仅显示出学习时空 HVF 变化的能力,而且还能够在仅提供单个 HVF 的情况下,生成未来 5.5 年的未来 HVF 预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/6450620/0c324d064e0f/pone.0214875.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验