Suppr超能文献

连通图上的流行病传播动力学。

Dynamics of epidemic spreading on connected graphs.

机构信息

CNRS, UMR 5219, Institut de Mathématiques de Toulouse, 31062, Toulouse Cedex, France.

出版信息

J Math Biol. 2021 Apr 16;82(6):52. doi: 10.1007/s00285-021-01602-5.

Abstract

We propose a new model that describes the dynamics of epidemic spreading on connected graphs. Our model consists in a PDE-ODE system where at each vertex of the graph we have a standard SIR model and connections between vertices are given by heat equations on the edges supplemented with Robin like boundary conditions at the vertices modeling exchanges between incident edges and the associated vertex. We describe the main properties of the system, and also derive the final total population of infected individuals. We present a semi-implicit in time numerical scheme based on finite differences in space which preserves the main properties of the continuous model such as the uniqueness and positivity of solutions and the conservation of the total population. We also illustrate our results with a collection of numerical simulations for a selection of connected graphs.

摘要

我们提出了一个新的模型,用于描述连通图上的流行病传播动力学。我们的模型由一个偏微分方程-常微分方程组组成,其中在图的每个顶点上都有一个标准的 SIR 模型,而顶点之间的连接则通过边的热方程给出,并在顶点处以类似于 Robin 的边界条件补充,以模拟入射边与相关顶点之间的交换。我们描述了系统的主要性质,并推导出了感染个体的总人数。我们提出了一个基于空间有限差分的半隐式时间数值方案,该方案保留了连续模型的主要性质,如解的唯一性和正定性以及总人数的守恒性。我们还通过对一系列连通图的数值模拟来说明我们的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c673/8051836/adf983cbecf4/285_2021_1602_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验