Suppr超能文献

临床遇到的异质性和解决网络电子健康记录数据中的异质性的方法:来自 N3C 和 RECOVER 项目的研究。

Clinical encounter heterogeneity and methods for resolving in networked EHR data: a study from N3C and RECOVER programs.

机构信息

NC TraCS Institute, UNC-School of Medicine, Chapel Hill, North Carolina, USA.

Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA.

出版信息

J Am Med Inform Assoc. 2023 May 19;30(6):1125-1136. doi: 10.1093/jamia/ocad057.

Abstract

OBJECTIVE

Clinical encounter data are heterogeneous and vary greatly from institution to institution. These problems of variance affect interpretability and usability of clinical encounter data for analysis. These problems are magnified when multisite electronic health record (EHR) data are networked together. This article presents a novel, generalizable method for resolving encounter heterogeneity for analysis by combining related atomic encounters into composite "macrovisits."

MATERIALS AND METHODS

Encounters were composed of data from 75 partner sites harmonized to a common data model as part of the NIH Researching COVID to Enhance Recovery Initiative, a project of the National Covid Cohort Collaborative. Summary statistics were computed for overall and site-level data to assess issues and identify modifications. Two algorithms were developed to refine atomic encounters into cleaner, analyzable longitudinal clinical visits.

RESULTS

Atomic inpatient encounters data were found to be widely disparate between sites in terms of length-of-stay (LOS) and numbers of OMOP CDM measurements per encounter. After aggregating encounters to macrovisits, LOS and measurement variance decreased. A subsequent algorithm to identify hospitalized macrovisits further reduced data variability.

DISCUSSION

Encounters are a complex and heterogeneous component of EHR data and native data issues are not addressed by existing methods. These types of complex and poorly studied issues contribute to the difficulty of deriving value from EHR data, and these types of foundational, large-scale explorations, and developments are necessary to realize the full potential of modern real-world data.

CONCLUSION

This article presents method developments to manipulate and resolve EHR encounter data issues in a generalizable way as a foundation for future research and analysis.

摘要

目的

临床就诊数据具有异质性,并且在不同机构之间差异很大。这些变异性问题会影响临床就诊数据的可解释性和可用性,从而影响分析。当多站点电子健康记录 (EHR) 数据联网时,这些问题会更加严重。本文提出了一种新颖的、可推广的方法,通过将相关的原子就诊组合成复合的“宏就诊”,来解决分析中的就诊异质性问题。

材料和方法

就诊由来自 75 个合作机构的数据组成,这些数据已根据 NIH Researching COVID to Enhance Recovery Initiative(国家新冠队列合作研究项目)的要求,通过协调至一个通用数据模型。计算了总体和站点级别的数据的汇总统计信息,以评估问题并确定修改方案。开发了两种算法,将原子就诊数据精炼为更整洁、更易于分析的纵向临床就诊。

结果

原子住院就诊数据在住院时间 (LOS) 和每个就诊的 OMOP CDM 测量次数方面,在不同站点之间存在广泛差异。将就诊汇总为宏就诊后,LOS 和测量变异性降低。随后的算法用于识别住院宏就诊,进一步降低了数据的变异性。

讨论

就诊是 EHR 数据的一个复杂且具有异质性的组成部分,现有方法无法解决原始数据的问题。这些类型的复杂且研究不足的问题,增加了从 EHR 数据中提取价值的难度,需要进行此类基础性的、大规模的探索和开发,才能充分发挥现代真实世界数据的潜力。

结论

本文提出了以通用方式操纵和解决 EHR 就诊数据问题的方法发展,为未来的研究和分析奠定了基础。

相似文献

1
6
Using Electronic Health Records to Identify Asthma-Related Acute Care Encounters.
Acad Pediatr. 2024 Nov-Dec;24(8):1229-1235. doi: 10.1016/j.acap.2024.05.003. Epub 2024 May 16.

引用本文的文献

1
Unveiling sub-populations in critical care settings: a real-world data approach in COVID-19.
Front Public Health. 2025 May 15;13:1544904. doi: 10.3389/fpubh.2025.1544904. eCollection 2025.
3
A common longitudinal intensive care unit data format (CLIF) for critical illness research.
Intensive Care Med. 2025 Mar;51(3):556-569. doi: 10.1007/s00134-025-07848-7. Epub 2025 Mar 13.
8
MENDS-on-FHIR: leveraging the OMOP common data model and FHIR standards for national chronic disease surveillance.
JAMIA Open. 2024 May 29;7(2):ooae045. doi: 10.1093/jamiaopen/ooae045. eCollection 2024 Jul.
9

本文引用的文献

4
Hospital Costs of Extracorporeal Membrane Oxygenation in Adults: A Systematic Review.
Pharmacoecon Open. 2021 Dec;5(4):613-623. doi: 10.1007/s41669-021-00272-9. Epub 2021 May 31.
5
Data gaps in electronic health record (EHR) systems: An audit of problem list completeness during the COVID-19 pandemic.
Int J Med Inform. 2021 Jun;150:104452. doi: 10.1016/j.ijmedinf.2021.104452. Epub 2021 Apr 1.
6
COVID-19 length of hospital stay: a systematic review and data synthesis.
BMC Med. 2020 Sep 3;18(1):270. doi: 10.1186/s12916-020-01726-3.
7
The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment.
J Am Med Inform Assoc. 2021 Mar 1;28(3):427-443. doi: 10.1093/jamia/ocaa196.
8
Heterogeneity introduced by EHR system implementation in a de-identified data resource from 100 non-affiliated organizations.
JAMIA Open. 2019 Aug 7;2(4):554-561. doi: 10.1093/jamiaopen/ooz035. eCollection 2019 Dec.
9
Variation in Physicians' Electronic Health Record Documentation and Potential Patient Harm from That Variation.
J Gen Intern Med. 2019 Nov;34(11):2355-2367. doi: 10.1007/s11606-019-05025-3. Epub 2019 Jun 10.
10
Analysis of length of hospital stay using electronic health records: A statistical and data mining approach.
PLoS One. 2018 Apr 13;13(4):e0195901. doi: 10.1371/journal.pone.0195901. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验