Suppr超能文献

电子健康记录数据中计算机诊断与结构化诊断的时间关系。

Temporal relationship of computed and structured diagnoses in electronic health record data.

作者信息

Schulz Wade L, Young H Patrick, Coppi Andreas, Mortazavi Bobak J, Lin Zhenqiu, Jean Raymond A, Krumholz Harlan M

机构信息

Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA.

Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT, USA.

出版信息

BMC Med Inform Decis Mak. 2021 Feb 17;21(1):61. doi: 10.1186/s12911-021-01416-x.

Abstract

BACKGROUND

The electronic health record (EHR) holds the prospect of providing more complete and timely access to clinical information for biomedical research, quality assessments, and quality improvement compared to other data sources, such as administrative claims. In this study, we sought to assess the completeness and timeliness of structured diagnoses in the EHR compared to computed diagnoses for hypertension (HTN), hyperlipidemia (HLD), and diabetes mellitus (DM).

METHODS

We determined the amount of time for a structured diagnosis to be recorded in the EHR from when an equivalent diagnosis could be computed from other structured data elements, such as vital signs and laboratory results. We used EHR data for encounters from January 1, 2012 through February 10, 2019 from an academic health system. Diagnoses for HTN, HLD, and DM were computed for patients with at least two observations above threshold separated by at least 30 days, where the thresholds were outpatient blood pressure of ≥ 140/90 mmHg, any low-density lipoprotein ≥ 130 mg/dl, or any hemoglobin A1c ≥ 6.5%, respectively. The primary measure was the length of time between the computed diagnosis and the time at which a structured diagnosis could be identified within the EHR history or problem list.

RESULTS

We found that 39.8% of those with HTN, 21.6% with HLD, and 5.2% with DM did not receive a corresponding structured diagnosis recorded in the EHR. For those who received a structured diagnosis, a mean of 389, 198, and 166 days elapsed before the patient had the corresponding diagnosis of HTN, HLD, or DM, respectively, recorded in the EHR.

CONCLUSIONS

We found a marked temporal delay between when a diagnosis can be computed or inferred and when an equivalent structured diagnosis is recorded within the EHR. These findings demonstrate the continued need for additional study of the EHR to avoid bias when using observational data and reinforce the need for computational approaches to identify clinical phenotypes.

摘要

背景

与行政索赔等其他数据源相比,电子健康记录(EHR)有望为生物医学研究、质量评估和质量改进提供更完整、及时的临床信息访问。在本研究中,我们试图评估EHR中结构化诊断与高血压(HTN)、高脂血症(HLD)和糖尿病(DM)的计算诊断相比的完整性和及时性。

方法

我们确定了从可以根据其他结构化数据元素(如生命体征和实验室结果)计算出等效诊断之时起,在EHR中记录结构化诊断所需的时间量。我们使用了来自一个学术医疗系统的2012年1月1日至2019年2月10日期间就诊的EHR数据。对于门诊血压≥140/90 mmHg、任何低密度脂蛋白≥130 mg/dl或任何糖化血红蛋白≥6.5%,且至少有两次高于阈值的观察结果且间隔至少30天的患者,计算其HTN、HLD和DM的诊断。主要衡量指标是计算诊断与在EHR病史或问题列表中能够识别出结构化诊断的时间之间的时长。

结果

我们发现,患有HTN的患者中有39.8%、患有HLD的患者中有21.6%以及患有DM的患者中有5.2%在EHR中未得到相应的结构化诊断记录。对于那些得到结构化诊断的患者,在其EHR中分别记录相应的HTN、HLD或DM诊断之前,平均分别经过了389天、198天和166天。

结论

我们发现,在能够计算或推断出诊断与在EHR中记录等效的结构化诊断之间存在明显的时间延迟。这些发现表明,在使用观察性数据时,仍需要对EHR进行更多研究以避免偏差,并强化了采用计算方法识别临床表型的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验