Suppr超能文献

利用虚拟现实和移动平台评估大脑、肌肉及心脏信号来预测晕动病

Toward Predicting Motion Sickness Using Virtual Reality and a Moving Platform Assessing Brain, Muscles, and Heart Signals.

作者信息

Recenti Marco, Ricciardi Carlo, Aubonnet Romain, Picone Ilaria, Jacob Deborah, Svansson Halldór Á R, Agnarsdóttir Sólveig, Karlsson Gunnar H, Baeringsdóttir Valdís, Petersen Hannes, Gargiulo Paolo

机构信息

Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavík, Iceland.

Department of Advanced Biomedical Sciences, University Hospital of Naples "Federico II", Naples, Italy.

出版信息

Front Bioeng Biotechnol. 2021 Apr 1;9:635661. doi: 10.3389/fbioe.2021.635661. eCollection 2021.

Abstract

Motion sickness (MS) and postural control (PC) conditions are common complaints among those who passively travel. Many theories explaining a probable cause for MS have been proposed but the most prominent is the sensory conflict theory, stating that a mismatch between vestibular and visual signals causes MS. Few measurements have been made to understand and quantify the interplay between muscle activation, brain activity, and heart behavior during this condition. We introduce here a novel multimetric system called BioVRSea based on virtual reality (VR), a mechanical platform and several biomedical sensors to study the physiology associated with MS and seasickness. This study reports the results from 28 individuals: the subjects stand on the platform wearing VR goggles, a 64-channel EEG dry-electrode cap, two EMG sensors on the gastrocnemius muscles, and a sensor on the chest that captures the heart rate (HR). The virtual environment shows a boat surrounded by waves whose frequency and amplitude are synchronized with the platform movement. Three measurement protocols are performed by each subject, after each of which they answer the Motion Sickness Susceptibility Questionnaire. Nineteen parameters are extracted from the biomedical sensors (5 from EEG, 12 from EMG and, 2 from HR) and 13 from the questionnaire. Eight binary indexes are computed to quantify the symptoms combining all of them in the Motion Sickness Index (I ). These parameters create the MS database composed of 83 measurements. All indexes undergo univariate statistical analysis, with EMG parameters being most significant, in contrast to EEG parameters. Machine learning (ML) gives good results in the classification of the binary indexes, finding random forest to be the best algorithm (accuracy of 74.7 for I ). The feature importance analysis showed that muscle parameters are the most relevant, and for EEG analysis, beta wave results were the most important. The present work serves as the first step in identifying the key physiological factors that differentiate those who suffer from MS from those who do not using the novel BioVRSea system. Coupled with ML, BioVRSea is of value in the evaluation of PC disruptions, which are among the most disturbing and costly health conditions affecting humans.

摘要

晕动病(MS)和姿势控制(PC)问题是被动旅行者常见的不适症状。人们提出了许多理论来解释MS可能的病因,但最突出的是感觉冲突理论,该理论认为前庭信号和视觉信号之间的不匹配会导致MS。在这种情况下,很少有测量来了解和量化肌肉激活、大脑活动和心脏行为之间的相互作用。我们在此介绍一种名为BioVRSea的新型多指标系统,它基于虚拟现实(VR)、一个机械平台和几个生物医学传感器,用于研究与MS和晕船相关的生理学。本研究报告了28名个体的结果:受试者站在平台上,佩戴VR护目镜、一个64通道脑电图干电极帽、两个位于腓肠肌的肌电图传感器以及一个位于胸部用于捕捉心率(HR)的传感器。虚拟环境展示了一艘被波浪环绕的船,其频率和振幅与平台运动同步。每个受试者执行三种测量方案,每次测量后他们要回答晕动病易感性问卷。从生物医学传感器中提取了19个参数(脑电图5个、肌电图12个、心率2个),从问卷中提取了13个参数。计算了八个二元指标,以量化症状,并将所有这些指标组合在晕动病指数(I )中。这些参数创建了由83次测量组成的MS数据库。所有指标都进行了单变量统计分析,与脑电图参数相比,肌电图参数最为显著。机器学习(ML)在二元指标分类方面取得了良好结果,发现随机森林是最佳算法(I 的准确率为74.7)。特征重要性分析表明肌肉参数最为相关,对于脑电图分析,β波结果最为重要。本研究是识别区分患MS者和未患MS者的关键生理因素的第一步,使用了新型BioVRSea系统。与ML相结合,BioVRSea在评估姿势控制障碍方面具有价值,姿势控制障碍是影响人类的最令人困扰且代价高昂的健康状况之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ede/8047066/a1ec686d4c66/fbioe-09-635661-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验