Suppr超能文献

利用虚拟现实和移动平台来定义评估脑震荡的生物标志物(BioVRSea)。

Towards defining biomarkers to evaluate concussions using virtual reality and a moving platform (BioVRSea).

机构信息

Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland.

Department of Psychology, School of Social Sciences, Reykjavik University, Reykjavik, Iceland.

出版信息

Sci Rep. 2022 May 30;12(1):8996. doi: 10.1038/s41598-022-12822-0.

Abstract

Current diagnosis of concussion relies on self-reported symptoms and medical records rather than objective biomarkers. This work uses a novel measurement setup called BioVRSea to quantify concussion status. The paradigm is based on brain and muscle signals (EEG, EMG), heart rate and center of pressure (CoP) measurements during a postural control task triggered by a moving platform and a virtual reality environment. Measurements were performed on 54 professional athletes who self-reported their history of concussion or non-concussion. Both groups completed a concussion symptom scale (SCAT5) before the measurement. We analyzed biosignals and CoP parameters before and after the platform movements, to compare the net response of individual postural control. The results showed that BioVRSea discriminated between the concussion and non-concussion groups. Particularly, EEG power spectral density in delta and theta bands showed significant changes in the concussion group and right soleus median frequency from the EMG signal differentiated concussed individuals with balance problems from the other groups. Anterior-posterior CoP frequency-based parameters discriminated concussed individuals with balance problems. Finally, we used machine learning to classify concussion and non-concussion, demonstrating that combining SCAT5 and BioVRSea parameters gives an accuracy up to 95.5%. This study is a step towards quantitative assessment of concussion.

摘要

目前的脑震荡诊断依赖于自我报告的症状和医疗记录,而不是客观的生物标志物。本工作使用了一种称为 BioVRSea 的新型测量装置来量化脑震荡状态。该范式基于脑和肌肉信号(EEG、EMG)、心率和中心压力(CoP)测量,在一个由移动平台和虚拟现实环境触发的姿势控制任务中进行。测量在 54 名自我报告脑震荡或非脑震荡病史的职业运动员身上进行。两组在测量前都完成了脑震荡症状量表(SCAT5)。我们分析了生物信号和 CoP 参数在平台运动前后的变化,以比较个体姿势控制的净响应。结果表明,BioVRSea 能够区分脑震荡组和非脑震荡组。特别是,脑电信号中 delta 和 theta 波段的功率谱密度在脑震荡组中发生了显著变化,而肌电图信号中的右比目鱼肌中频则将有平衡问题的脑震荡患者与其他组区分开来。基于 CoP 前后向频率的参数可将有平衡问题的脑震荡患者区分开来。最后,我们使用机器学习对脑震荡和非脑震荡进行分类,结果表明结合 SCAT5 和 BioVRSea 参数可达到高达 95.5%的准确率。本研究是朝着脑震荡的定量评估迈出的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f661/9151646/2ea913e596d5/41598_2022_12822_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验