Suppr超能文献

基于 CT 图像股中部评估心血管风险:使用放射密度分布的基于树的机器学习方法。

Assessing cardiovascular risks from a mid-thigh CT image: a tree-based machine learning approach using radiodensitometric distributions.

机构信息

Institute for Biomedical and Neural Engineering, Reykjavík University, Reykjavík, Iceland.

Department of Advanced Biomedical Sciences, University Hospital of Naples 'Federico II', Naples, Italy.

出版信息

Sci Rep. 2020 Feb 18;10(1):2863. doi: 10.1038/s41598-020-59873-9.

Abstract

The nonlinear trimodal regression analysis (NTRA) method based on radiodensitometric CT distributions was recently developed and assessed for the quantification of lower extremity function and nutritional parameters in aging subjects. However, the use of the NTRA method for building predictive models of cardiovascular health was not explored; in this regard, the present study reports the use of NTRA parameters for classifying elderly subjects with coronary heart disease (CHD), cardiovascular disease (CVD), and chronic heart failure (CHF) using multivariate logistic regression and three tree-based machine learning (ML) algorithms. Results from each model were assembled as a typology of four classification metrics: total classification score, classification by tissue type, tissue-based feature importance, and classification by age. The predictive utility of this method was modelled using CHF incidence data. ML models employing the random forests algorithm yielded the highest classification performance for all analyses, and overall classification scores for all three conditions were excellent: CHD (AUCROC: 0.936); CVD (AUCROC: 0.914); CHF (AUCROC: 0.994). Longitudinal assessment for modelling the prediction of CHF incidence was likewise robust (AUCROC: 0.993). The present work introduces a substantial step forward in the construction of non-invasive, standardizable tools for associating adipose, loose connective, and lean tissue changes with cardiovascular health outcomes in elderly individuals.

摘要

基于放射性密度 CT 分布的非线性三模态回归分析 (NTRA) 方法最近被开发并评估用于量化老年受试者的下肢功能和营养参数。然而,尚未探索使用 NTRA 方法构建心血管健康预测模型;在这方面,本研究报告了使用 NTRA 参数对患有冠心病 (CHD)、心血管疾病 (CVD) 和慢性心力衰竭 (CHF) 的老年受试者进行分类的情况,使用了多元逻辑回归和三种基于树的机器学习 (ML) 算法。从每个模型中得出的结果被组装成一个包含四个分类指标的分类法:总分类评分、组织类型分类、基于组织的特征重要性和基于年龄的分类。该方法的预测效用使用 CHF 发病数据进行建模。使用随机森林算法的 ML 模型在所有分析中均表现出最高的分类性能,并且所有三种情况下的总体分类评分都非常出色:CHD(AUCROC:0.936);CVD(AUCROC:0.914);CHF(AUCROC:0.994)。用于预测 CHF 发病的纵向评估同样稳健(AUCROC:0.993)。本工作在构建非侵入性、可标准化的工具方面向前迈出了重要一步,这些工具可将脂肪、疏松结缔组织和瘦组织的变化与老年个体的心血管健康结果相关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd98/7029006/b4d262aebae1/41598_2020_59873_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验