Institute for Biomedical and Neural Engineering, Reykjavík University, Reykjavík, Iceland.
Department of Advanced Biomedical Sciences, University Hospital of Naples 'Federico II', Naples, Italy.
Sci Rep. 2020 Feb 18;10(1):2863. doi: 10.1038/s41598-020-59873-9.
The nonlinear trimodal regression analysis (NTRA) method based on radiodensitometric CT distributions was recently developed and assessed for the quantification of lower extremity function and nutritional parameters in aging subjects. However, the use of the NTRA method for building predictive models of cardiovascular health was not explored; in this regard, the present study reports the use of NTRA parameters for classifying elderly subjects with coronary heart disease (CHD), cardiovascular disease (CVD), and chronic heart failure (CHF) using multivariate logistic regression and three tree-based machine learning (ML) algorithms. Results from each model were assembled as a typology of four classification metrics: total classification score, classification by tissue type, tissue-based feature importance, and classification by age. The predictive utility of this method was modelled using CHF incidence data. ML models employing the random forests algorithm yielded the highest classification performance for all analyses, and overall classification scores for all three conditions were excellent: CHD (AUCROC: 0.936); CVD (AUCROC: 0.914); CHF (AUCROC: 0.994). Longitudinal assessment for modelling the prediction of CHF incidence was likewise robust (AUCROC: 0.993). The present work introduces a substantial step forward in the construction of non-invasive, standardizable tools for associating adipose, loose connective, and lean tissue changes with cardiovascular health outcomes in elderly individuals.
基于放射性密度 CT 分布的非线性三模态回归分析 (NTRA) 方法最近被开发并评估用于量化老年受试者的下肢功能和营养参数。然而,尚未探索使用 NTRA 方法构建心血管健康预测模型;在这方面,本研究报告了使用 NTRA 参数对患有冠心病 (CHD)、心血管疾病 (CVD) 和慢性心力衰竭 (CHF) 的老年受试者进行分类的情况,使用了多元逻辑回归和三种基于树的机器学习 (ML) 算法。从每个模型中得出的结果被组装成一个包含四个分类指标的分类法:总分类评分、组织类型分类、基于组织的特征重要性和基于年龄的分类。该方法的预测效用使用 CHF 发病数据进行建模。使用随机森林算法的 ML 模型在所有分析中均表现出最高的分类性能,并且所有三种情况下的总体分类评分都非常出色:CHD(AUCROC:0.936);CVD(AUCROC:0.914);CHF(AUCROC:0.994)。用于预测 CHF 发病的纵向评估同样稳健(AUCROC:0.993)。本工作在构建非侵入性、可标准化的工具方面向前迈出了重要一步,这些工具可将脂肪、疏松结缔组织和瘦组织的变化与老年个体的心血管健康结果相关联。