Suppr超能文献

生物图像分割的开源深度学习软件。

Open-source deep-learning software for bioimage segmentation.

机构信息

Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02142.

Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI 53706.

出版信息

Mol Biol Cell. 2021 Apr 19;32(9):823-829. doi: 10.1091/mbc.E20-10-0660.

Abstract

Microscopy images are rich in information about the dynamic relationships among biological structures. However, extracting this complex information can be challenging, especially when biological structures are closely packed, distinguished by texture rather than intensity, and/or low intensity relative to the background. By learning from large amounts of annotated data, deep learning can accomplish several previously intractable bioimage analysis tasks. Until the past few years, however, most deep-learning workflows required significant computational expertise to be applied. Here, we survey several new open-source software tools that aim to make deep-learning-based image segmentation accessible to biologists with limited computational experience. These tools take many different forms, such as web apps, plug-ins for existing imaging analysis software, and preconfigured interactive notebooks and pipelines. In addition to surveying these tools, we overview several challenges that remain in the field. We hope to expand awareness of the powerful deep-learning tools available to biologists for image analysis.

摘要

显微镜图像包含有关生物结构之间动态关系的丰富信息。然而,提取这些复杂的信息可能具有挑战性,尤其是当生物结构紧密堆积、通过纹理而不是强度区分、且/或相对于背景强度较低时。通过从大量标注数据中学习,深度学习可以完成几个以前难以解决的生物图像分析任务。然而,直到近几年,大多数深度学习工作流程都需要大量的计算专业知识才能应用。在这里,我们调查了几个新的开源软件工具,这些工具旨在使具有有限计算经验的生物学家能够使用基于深度学习的图像分割。这些工具采用多种不同的形式,例如网络应用程序、现有成像分析软件的插件以及预配置的交互式笔记本和管道。除了调查这些工具外,我们还概述了该领域仍然存在的一些挑战。我们希望提高生物学家对可用于图像分析的强大深度学习工具的认识。

相似文献

1
Open-source deep-learning software for bioimage segmentation.
Mol Biol Cell. 2021 Apr 19;32(9):823-829. doi: 10.1091/mbc.E20-10-0660.
2
From pixels to insights: Machine learning and deep learning for bioimage analysis.
Bioessays. 2024 Feb;46(2):e2300114. doi: 10.1002/bies.202300114. Epub 2023 Dec 6.
3
Deep learning for bioimage analysis in developmental biology.
Development. 2021 Sep 15;148(18). doi: 10.1242/dev.199616. Epub 2021 Sep 7.
5
Arkitekt: streaming analysis and real-time workflows for microscopy.
Nat Methods. 2024 Oct;21(10):1884-1894. doi: 10.1038/s41592-024-02404-5. Epub 2024 Sep 18.
6
Deep learning -- promises for 3D nuclear imaging: a guide for biologists.
J Cell Sci. 2022 Apr 1;135(7). doi: 10.1242/jcs.258986. Epub 2022 Apr 14.
8
Biological imaging software tools.
Nat Methods. 2012 Jun 28;9(7):697-710. doi: 10.1038/nmeth.2084.
10
DeepImageJ: A user-friendly environment to run deep learning models in ImageJ.
Nat Methods. 2021 Oct;18(10):1192-1195. doi: 10.1038/s41592-021-01262-9. Epub 2021 Sep 30.

引用本文的文献

1
The CPEB ortholog Orb2 regulates brain size through the TRIM-NHL RNA-binding protein, Brain tumor.
bioRxiv. 2025 Jul 22:2025.07.18.665534. doi: 10.1101/2025.07.18.665534.
2
OmniSegger: A time-lapse image analysis pipeline for bacterial cells.
PLoS Comput Biol. 2025 May 28;21(5):e1013088. doi: 10.1371/journal.pcbi.1013088. eCollection 2025 May.
3
Microscopy methods for the in vivo study of nanoscale nuclear organization.
Biochem Soc Trans. 2025 Feb 3;53(1):BST20240629. doi: 10.1042/BST20240629.
4
Mitochondrial segmentation and function prediction in live-cell images with deep learning.
Nat Commun. 2025 Jan 16;16(1):743. doi: 10.1038/s41467-025-55825-x.
5
Preliminary clinical performance of a Cas13a-based lateral flow assay for detecting in urine specimens.
mSphere. 2025 Jan 28;10(1):e0067724. doi: 10.1128/msphere.00677-24. Epub 2024 Dec 17.
6
Clinical Performance of Cas13a-based Point-of-Care Lateral Flow Assay for Detecting .
medRxiv. 2024 Mar 4:2024.03.01.24303603. doi: 10.1101/2024.03.01.24303603.
7
Defining the boundaries: challenges and advances in identifying cells in microscopy images.
Curr Opin Biotechnol. 2024 Feb;85:103055. doi: 10.1016/j.copbio.2023.103055. Epub 2023 Dec 23.
8
Artifact Augmentation for Enhanced Tissue Detection in Microscope Scanner Systems.
Sensors (Basel). 2023 Nov 17;23(22):9243. doi: 10.3390/s23229243.
10
A biologist's guide to planning and performing quantitative bioimaging experiments.
PLoS Biol. 2023 Jun 27;21(6):e3002167. doi: 10.1371/journal.pbio.3002167. eCollection 2023 Jun.

本文引用的文献

1
DeepImageJ: A user-friendly environment to run deep learning models in ImageJ.
Nat Methods. 2021 Oct;18(10):1192-1195. doi: 10.1038/s41592-021-01262-9. Epub 2021 Sep 30.
2
Text Data Augmentation for Deep Learning.
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
3
nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer.
Cell Syst. 2020 May 20;10(5):453-458.e6. doi: 10.1016/j.cels.2020.04.003. Epub 2020 May 7.
4
InstantDL: an easy-to-use deep learning pipeline for image segmentation and classification.
BMC Bioinformatics. 2021 Mar 2;22(1):103. doi: 10.1186/s12859-021-04037-3.
5
DeepMIB: User-friendly and open-source software for training of deep learning network for biological image segmentation.
PLoS Comput Biol. 2021 Mar 2;17(3):e1008374. doi: 10.1371/journal.pcbi.1008374. eCollection 2021 Mar.
6
DeepCell Kiosk: scaling deep learning-enabled cellular image analysis with Kubernetes.
Nat Methods. 2021 Jan;18(1):43-45. doi: 10.1038/s41592-020-01023-0. Epub 2021 Jan 4.
7
Interactive Classification of Whole-Slide Imaging Data for Cancer Researchers.
Cancer Res. 2021 Feb 15;81(4):1171-1177. doi: 10.1158/0008-5472.CAN-20-0668. Epub 2020 Dec 21.
8
Cellpose: a generalist algorithm for cellular segmentation.
Nat Methods. 2021 Jan;18(1):100-106. doi: 10.1038/s41592-020-01018-x. Epub 2020 Dec 14.
9
A bird's-eye view of deep learning in bioimage analysis.
Comput Struct Biotechnol J. 2020 Aug 7;18:2312-2325. doi: 10.1016/j.csbj.2020.08.003. eCollection 2020.
10
Array programming with NumPy.
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验