Suppr超能文献

深度学习在发育生物学生物图像分析中的应用。

Deep learning for bioimage analysis in developmental biology.

机构信息

Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.

Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK.

出版信息

Development. 2021 Sep 15;148(18). doi: 10.1242/dev.199616. Epub 2021 Sep 7.

Abstract

Deep learning has transformed the way large and complex image datasets can be processed, reshaping what is possible in bioimage analysis. As the complexity and size of bioimage data continues to grow, this new analysis paradigm is becoming increasingly ubiquitous. In this Review, we begin by introducing the concepts needed for beginners to understand deep learning. We then review how deep learning has impacted bioimage analysis and explore the open-source resources available to integrate it into a research project. Finally, we discuss the future of deep learning applied to cell and developmental biology. We analyze how state-of-the-art methodologies have the potential to transform our understanding of biological systems through new image-based analysis and modelling that integrate multimodal inputs in space and time.

摘要

深度学习改变了处理大型复杂图像数据集的方式,重塑了生物图像分析的可能性。随着生物图像数据的复杂性和规模不断增长,这种新的分析范例变得越来越普遍。在这篇综述中,我们首先介绍初学者理解深度学习所需的概念。然后,我们回顾了深度学习如何影响生物图像分析,并探讨了可用于将其集成到研究项目中的开源资源。最后,我们讨论了深度学习在细胞和发育生物学中的应用前景。我们分析了最先进的方法如何通过新的基于图像的分析和建模来改变我们对生物系统的理解,这些方法将时空上的多模态输入进行整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97fd/8451066/a274f33e805b/develop-148-199616-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验