Suppr超能文献

Deep Manifold Embedding for Hyperspectral Image Classification.

作者信息

Gong Zhiqiang, Hu Weidong, Du Xiaoyong, Zhong Ping, Hu Panhe

出版信息

IEEE Trans Cybern. 2022 Oct;52(10):10430-10443. doi: 10.1109/TCYB.2021.3069790. Epub 2022 Sep 19.

Abstract

Deep learning methods have played a more important role in hyperspectral image classification. However, general deep learning methods mainly take advantage of the samplewise information to formulate the training loss while ignoring the intrinsic data structure of each class. Due to the high spectral dimension and great redundancy between different spectral channels in the hyperspectral image, these former training losses usually cannot work so well for the deep representation of the image. To tackle this problem, this work develops a novel deep manifold embedding method (DMEM) for deep learning in hyperspectral image classification. First, each class in the image is modeled as a specific nonlinear manifold, and the geodesic distance is used to measure the correlation between the samples. Then, based on the hierarchical clustering, the manifold structure of the data can be captured and each nonlinear data manifold can be divided into several subclasses. Finally, considering the distribution of each subclass and the correlation between different subclasses under data manifold, DMEM is constructed as the novel training loss to incorporate the special classwise information in the training process and obtain discriminative representation for the hyperspectral image. Experiments over four real-world hyperspectral image datasets have demonstrated the effectiveness of the proposed method when compared with general sample-based losses and showed superiority when compared with state-of-the-art methods.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验