Suppr超能文献

微重力和辐射对航天员椎间盘健康的影响。

Microgravity and Radiation Effects on Astronaut Intervertebral Disc Health.

出版信息

Aerosp Med Hum Perform. 2021 May 1;92(5):342-352. doi: 10.3357/AMHP.5713.2021.

Abstract

The effects of spaceflight on the intervertebral disc (IVD) have not been thoroughly studied, despite the knowledge that spaceflight increases the risk of herniation of IVDs in astronauts upon return to Earth. However, as long duration missions become more common, fully characterizing the mechanisms behind space-induced IVD degeneration becomes increasingly imperative for mission success. This review therefore surveys current literature to outline the results of human, animal, and cell-level studies investigating the effect of microgravity and radiation exposure on IVD health. Overall, recurring study findings include increases in IVD height in microgravity conditions, upregulation of catabolic proteases leading to a weakening extracellular matrix (ECM), and both nucleus pulposus (NP) swelling and loss of annulus fibrosus (AF) fiber alignment which are hypothesized to contribute to the increased risk of herniation when reloading is experienced. However, the limitations of current studies are also discussed. For example, human studies do not allow for invasive measures of the underpinning biochemical mechanisms, correlating animal model results to the human condition may be difficult, and cellular studies lack incorporation of ECM and other complexities that mimic the native IVD microarchitecture and environment. Moving forward, the use of three-dimensional organoid culture models that incorporate IVD-specific human cells, ECM, and signals as well as the development of cell- and ECM-level computational models may further improve our understanding of the impacts that spaceflight has on astronaut IVD health.

摘要

尽管已知太空飞行会增加宇航员返回地球时椎间盘(IVD)突出的风险,但对太空飞行对椎间盘的影响尚未进行彻底研究。然而,随着长时间任务变得更加普遍,全面描述太空引起的椎间盘退行性变背后的机制对于任务成功变得越来越重要。因此,本综述调查了当前的文献,概述了人类、动物和细胞水平研究调查微重力和辐射暴露对椎间盘健康影响的结果。总的来说,反复出现的研究结果包括在微重力条件下椎间盘高度增加、分解代谢蛋白酶的上调导致细胞外基质(ECM)减弱,以及核髓核(NP)肿胀和纤维环(AF)纤维排列丧失,这些被认为增加了重新加载时突出的风险。然而,也讨论了当前研究的局限性。例如,人类研究不允许对潜在的生化机制进行侵入性测量,将动物模型结果与人类状况相关联可能很困难,而细胞研究缺乏对细胞外基质和其他复杂性的纳入,这些复杂性模拟了天然椎间盘的微观结构和环境。展望未来,使用包含椎间盘特异性人类细胞、细胞外基质和信号的三维类器官培养模型以及开发细胞和细胞外基质水平的计算模型可能会进一步提高我们对太空飞行对宇航员椎间盘健康影响的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验