Suppr超能文献

使用行为和功能磁共振成像预测脑卒中后失语症的语言恢复。

Predicting language recovery in post-stroke aphasia using behavior and functional MRI.

机构信息

Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA.

Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.

出版信息

Sci Rep. 2021 Apr 19;11(1):8419. doi: 10.1038/s41598-021-88022-z.

Abstract

Language outcomes after speech and language therapy in post-stroke aphasia are challenging to predict. This study examines behavioral language measures and resting state fMRI (rsfMRI) as predictors of treatment outcome. Fifty-seven patients with chronic aphasia were recruited and treated for one of three aphasia impairments: anomia, agrammatism, or dysgraphia. Treatment effect was measured by performance on a treatment-specific language measure, assessed before and after three months of language therapy. Each patient also underwent an additional 27 language assessments and a rsfMRI scan at baseline. Patient scans were decomposed into 20 components by group independent component analysis, and the fractional amplitude of low-frequency fluctuations (fALFF) was calculated for each component time series. Post-treatment performance was modelled with elastic net regression, using pre-treatment performance and either behavioral language measures or fALFF imaging predictors. Analysis showed strong performance for behavioral measures in anomia (R = 0.948, n = 28) and for fALFF predictors in agrammatism (R = 0.876, n = 11) and dysgraphia (R = 0.822, n = 18). Models of language outcomes after treatment trained using rsfMRI features may outperform models trained using behavioral language measures in some patient populations. This suggests that rsfMRI may have prognostic value for aphasia therapy outcomes.

摘要

语言治疗后脑卒中后失语症的语言结果难以预测。本研究探讨了行为语言测量和静息态 fMRI(rsfMRI)作为治疗结果的预测因子。招募了 57 名慢性失语症患者,并针对三种失语症损伤之一进行治疗:命名障碍、语法障碍或失写症。治疗效果通过治疗特异性语言测量的表现来衡量,在语言治疗三个月前后进行评估。每位患者还在基线时接受了另外 27 项语言评估和 rsfMRI 扫描。通过组独立成分分析将患者扫描分解为 20 个分量,然后为每个分量时间序列计算低频波动的分数幅度(fALFF)。使用治疗前的表现以及行为语言测量或 fALFF 成像预测因子,使用弹性网回归对治疗后的表现进行建模。分析显示,行为测量在命名障碍方面表现出色(R²=0.948,n=28),在语法障碍和失写症方面表现出色(fALFF 预测因子:R²=0.876,n=11;R²=0.822,n=18)。使用 rsfMRI 特征训练的治疗后语言模型在某些患者群体中的表现可能优于使用行为语言测量训练的模型。这表明 rsfMRI 可能对失语症治疗结果具有预后价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b02/8055660/13f385095352/41598_2021_88022_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验