Gerlin Léo, Escourrou Antoine, Cassan Cédric, Maviane Macia Felicià, Peeters Nemo, Genin Stéphane, Baroukh Caroline
LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
UMR BFP, Université de Bordeaux, INRAE, 33882 Villenave d'Ornon, France.
Environ Microbiol. 2021 Oct;23(10):5962-5978. doi: 10.1111/1462-2920.15535. Epub 2021 Apr 26.
The plant pathogen Ralstonia solanacearum uses plant resources to intensely proliferate in xylem vessels and provoke plant wilting. We combined automatic phenotyping and tissue/xylem quantitative metabolomics of infected tomato plants to decipher the dynamics of bacterial wilt. Daily acquisition of physiological parameters such as transpiration and growth were performed. Measurements allowed us to identify a tipping point in bacterial wilt dynamics. At this tipping point, the reached bacterial density brutally disrupts plant physiology and rapidly induces its death. We compared the metabolic and physiological signatures of the infection with drought stress, and found that similar changes occur. Quantitative dynamics of xylem content enabled us to identify glutamine (and asparagine) as primary resources R. solanacearum consumed during its colonization phase. An abundant production of putrescine was also observed during the infection process and was strongly correlated with in planta bacterial growth. Dynamic profiling of xylem metabolites confirmed that glutamine is the favoured substrate of R. solanacearum. On the other hand, a triple mutant strain unable to metabolize glucose, sucrose and fructose appears to be only weakly reduced for in planta growth and pathogenicity.
植物病原菌青枯雷尔氏菌利用植物资源在木质部导管中大量繁殖,引发植物萎蔫。我们结合受感染番茄植株的自动表型分析以及组织/木质部定量代谢组学,来解读青枯病的发病动态。每天获取蒸腾作用和生长等生理参数。这些测量使我们能够确定青枯病发病动态中的一个转折点。在这个转折点,达到的细菌密度会突然破坏植物生理机能并迅速导致其死亡。我们将感染的代谢和生理特征与干旱胁迫进行了比较,发现出现了类似的变化。木质部成分的定量动态分析使我们能够确定谷氨酰胺(和天冬酰胺)是青枯雷尔氏菌在其定殖阶段消耗的主要资源。在感染过程中还观察到大量腐胺的产生,并且它与植物体内细菌生长密切相关。木质部代谢物的动态分析证实谷氨酰胺是青枯雷尔氏菌偏爱的底物。另一方面,一种无法代谢葡萄糖、蔗糖和果糖的三重突变菌株在植物体内的生长和致病性似乎仅略有降低。