Institute of Quantitative and Theoretical Biology, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany.
CEPLAS - Cluster of Excellence on Plant Sciences, Universitätsstr. 1, 40225, Düsseldorf, Germany.
BMC Bioinformatics. 2021 Apr 20;22(1):203. doi: 10.1186/s12859-021-04122-7.
Computational mathematical models of biological and biomedical systems have been successfully applied to advance our understanding of various regulatory processes, metabolic fluxes, effects of drug therapies, and disease evolution and transmission. Unfortunately, despite community efforts leading to the development of SBML and the BioModels database, many published models have not been fully exploited, largely due to a lack of proper documentation or the dependence on proprietary software. To facilitate the reuse and further development of systems biology and systems medicine models, an open-source toolbox that makes the overall process of model construction more consistent, understandable, transparent, and reproducible is desired.
We provide an update on the development of modelbase, a free, expandable Python package for constructing and analysing ordinary differential equation-based mathematical models of dynamic systems. It provides intuitive and unified methods to construct and solve these systems. Significantly expanded visualisation methods allow for convenient analysis of the structural and dynamic properties of models. After specifying reaction stoichiometries and rate equations modelbase can automatically assemble the associated system of differential equations. A newly provided library of common kinetic rate laws reduces the repetitiveness of the computer programming code. modelbase is also fully compatible with SBML. Previous versions provided functions for the automatic construction of networks for isotope labelling studies. Now, using user-provided label maps, modelbase v1.2.3 streamlines the expansion of classic models to their isotope-specific versions. Finally, the library of previously published models implemented in modelbase is growing continuously. Ranging from photosynthesis to tumour cell growth to viral infection evolution, all these models are now available in a transparent, reusable and unified format through modelbase.
With this new Python software package, which is written in currently one of the most popular programming languages, the user can develop new models and actively profit from the work of others. modelbase enables reproducing and replicating models in a consistent, tractable and expandable manner. Moreover, the expansion of models to their isotopic label-specific versions enables simulating label propagation, thus providing quantitative information regarding network topology and metabolic fluxes.
计算生物和生物医学系统的数学模型已成功应用于深入了解各种调控过程、代谢通量、药物治疗效果以及疾病的演变和传播。不幸的是,尽管社区努力推动了 SBML 和 BioModels 数据库的发展,但许多已发表的模型并未得到充分利用,这主要是由于缺乏适当的文档或依赖专有软件。为了促进系统生物学和系统医学模型的再利用和进一步发展,需要一种开源工具包,使模型构建的整个过程更加一致、可理解、透明和可重复。
我们提供了 modelbase 的开发更新,这是一个免费的、可扩展的 Python 包,用于构建和分析基于常微分方程的动态系统数学模型。它提供了直观且统一的方法来构建和求解这些系统。显著扩展的可视化方法允许方便地分析模型的结构和动态特性。在指定反应化学计量和速率方程后,modelbase 可以自动组装相关的微分方程系统。新提供的常见动力学速率定律库减少了计算机编程代码的重复性。modelbase 也完全兼容 SBML。以前的版本提供了用于自动构建同位素标记研究网络的功能。现在,使用用户提供的标签映射,modelbase v1.2.3 简化了将经典模型扩展到其同位素特异性版本的过程。最后,modelbase 中实现的先前发表模型的库不断增长。从光合作用到肿瘤细胞生长再到病毒感染演变,所有这些模型现在都以透明、可重复使用和统一的格式通过 modelbase 提供。
有了这个新的 Python 软件包,它是目前最流行的编程语言之一,用户可以开发新的模型,并从他人的工作中积极受益。modelbase 以一致、可处理和可扩展的方式启用模型的再现和复制。此外,将模型扩展到其同位素标签特异性版本可以模拟标签传播,从而提供关于网络拓扑和代谢通量的定量信息。