Schader J F, Zderic I, Gehweiler D, Dauwe J, Mys K, Danker C, Acklin Y P, Sommer C, Gueorguiev B, Stoffel K
AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland.
University of Basel, Basel, Switzerland.
BMC Musculoskelet Disord. 2021 Apr 20;22(1):371. doi: 10.1186/s12891-021-04234-4.
With regard to biomechanical testing of orthopaedic implants, there is no consensus on whether artificial creation of standardized bone fractures or their simulation by means of osteotomies result in more realistic outcomes. Therefore, the aim of this study was to artificially create and analyze in an appropriate setting the biomechanical behavior of standardized stable pertrochanteric fractures versus their simulation via osteotomizing.
Eight pairs of fresh-frozen human cadaveric femora aged 72.7 ± 14.9 years (range 48-89 years) were assigned in paired fashion to two study groups. In Group 1, stable pertrochanteric fractures AO/OTA 31-A1 were artificially created via constant force application on the anterior cortex of the femur through a blunt guillotine blade. The same fracture type was simulated in Group 2 by means of osteotomies. All femora were implanted with a dynamic hip screw and biomechanically tested in 20° adduction under progressively increasing physiologic cyclic axial loading at 2 Hz, starting at 500 N and increasing at a rate of 0.1 N/cycle. Femoral head fragment movements with respect to the shaft were monitored by means of optical motion tracking.
Cycles/failure load at 15° varus deformation, 10 mm leg shortening and 15° femoral head rotation around neck axis were 11324 ± 848/1632.4 ± 584.8 N, 11052 ± 1573/1605.2 ± 657.3 N and 11849 ± 1120/1684.9 ± 612.0 N in Group 1, and 10971 ± 2019/1597.1 ± 701.9 N, 10681 ± 1868/1568.1 ± 686.8 N and 10017 ± 4081/1501.7 ± 908.1 N in Group 2, respectively, with no significant differences between the two groups, p ≥ 0.233.
From a biomechanical perspective, by resulting in more consistent outcomes under dynamic loading, standardized artificial stable pertrochanteric femur fracture creation may be more suitable for orthopaedic implant testing compared to osteotomizing the bone.
关于骨科植入物的生物力学测试,对于人工制造标准化骨折或通过截骨术模拟骨折是否能产生更真实的结果,目前尚无共识。因此,本研究的目的是在适当的环境中人工制造并分析标准化稳定型转子间骨折的生物力学行为,并与通过截骨术模拟的情况进行比较。
将八对年龄为72.7±14.9岁(范围48 - 89岁)的新鲜冷冻人体股骨以配对方式分配到两个研究组。在第1组中,通过钝性断头刀片对股骨前皮质施加恒定力来人工制造AO/OTA 31 - A1型稳定型转子间骨折。在第2组中通过截骨术模拟相同的骨折类型。所有股骨均植入动力髋螺钉,并在2Hz的频率下,从500N开始,以0.1N/循环的速率逐渐增加生理循环轴向载荷,在20°内收位进行生物力学测试。通过光学运动跟踪监测股骨头碎片相对于股骨干的运动。
在第1组中,内翻15°变形、下肢缩短10mm和股骨头绕颈轴旋转15°时的循环/失效载荷分别为11324±848/1632.4±584.8N、11052±1573/1605.2±657.3N和11849±1120/1684.9±612.0N;在第2组中分别为10971±2019/1597.1±701.9N、10681±1868/1568.1±686.8N和10017±4081/1501.7±908.1N,两组之间无显著差异,p≥0.233。
从生物力学角度来看,与对骨骼进行截骨术相比,标准化人工制造稳定型转子间股骨骨折在动态载荷下能产生更一致的结果,可能更适合用于骨科植入物测试。