Suppr超能文献

KEGG2Net:从KEGG通路推导基因相互作用网络和无环图。

KEGG2Net: Deducing gene interaction networks and acyclic graphs from KEGG pathways.

作者信息

Chanumolu Sree K, Albahrani Mustafa, Can Handan, Otu Hasan H

机构信息

Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.

出版信息

EMBnet J. 2021;26. doi: 10.14806/ej.26.0.949. Epub 2021 Mar 5.

Abstract

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database provides a manual curation of biological pathways that involve genes (or gene products), metabolites, chemical compounds, maps, and other entries. However, most applications and datasets involved in omics are gene or protein-centric requiring pathway representations that include direct and indirect interactions only between genes. Furthermore, special methodologies, such as Bayesian networks require acyclic representations of graphs. We developed KEGG2Net, a web resource that generates a network involving only the genes represented on a KEGG pathway with all of the direct and indirect gene-gene interactions deduced from the pathway. KEGG2Net offers four different methods to remove cycles from the resulting gene interaction network, converting them into directed acyclic graphs (DAGs). We generated synthetic gene expression data using the gene interaction networks deduced from the KEGG pathways and performed a comparative analysis of different cycle removal methods by testing the fitness of their DAGs to the data and by the number of edges they eliminate. Our results indicate that an ensemble method for cycle removal performs as the best approach to convert the gene interaction networks into DAGs. Resulting gene interaction networks and DAGs are represented in multiple user-friendly formats that can be used in other applications, and as images for quick and easy visualisation. The KEGG2Net web portal converts KEGG maps for any organism into gene-gene interaction networks and corresponding DAGS representing all of the direct and indirect interactions among the genes.

摘要

京都基因与基因组百科全书(KEGG)通路数据库提供了对生物通路的人工整理,这些通路涉及基因(或基因产物)、代谢物、化合物、图谱及其他条目。然而,大多数组学相关的应用和数据集是以基因或蛋白质为中心的,这就需要通路表示仅包括基因之间的直接和间接相互作用。此外,特殊方法(如贝叶斯网络)需要图的无环表示。我们开发了KEGG2Net,这是一个网络资源,它能生成一个仅包含KEGG通路中所代表基因的网络,并从该通路推导出所有直接和间接的基因-基因相互作用。KEGG2Net提供了四种不同方法来消除所得基因相互作用网络中的环,将其转换为有向无环图(DAG)。我们使用从KEGG通路推导出的基因相互作用网络生成了合成基因表达数据,并通过测试其DAG对数据的拟合度以及它们消除的边数,对不同的环消除方法进行了比较分析。我们的结果表明,一种环消除的集成方法是将基因相互作用网络转换为DAG的最佳方法。所得的基因相互作用网络和DAG以多种用户友好的格式表示,可用于其他应用,也可作为图像进行快速简便的可视化。KEGG2Net网站门户将任何生物体的KEGG图谱转换为基因-基因相互作用网络以及代表基因间所有直接和间接相互作用的相应DAG。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cad/8055051/aa15fb078216/nihms-1684418-f0001.jpg

相似文献

1
KEGG2Net: Deducing gene interaction networks and acyclic graphs from KEGG pathways.
EMBnet J. 2021;26. doi: 10.14806/ej.26.0.949. Epub 2021 Mar 5.
2
Estimation of Directed Acyclic Graphs Through Two-stage Adaptive Lasso for Gene Network Inference.
J Am Stat Assoc. 2016;111(515):1004-1019. doi: 10.1080/01621459.2016.1142880. Epub 2016 Oct 18.
3
Growing Directed Acyclic Graphs: Optimization Functions for Pathway Reconstruction Algorithms.
J Comput Biol. 2023 Jul;30(7):814-828. doi: 10.1089/cmb.2022.0376. Epub 2023 Mar 1.
6
Bayesian learning of multiple directed networks from observational data.
Stat Med. 2020 Dec 30;39(30):4745-4766. doi: 10.1002/sim.8751. Epub 2020 Sep 23.
7
KEGG: Kyoto Encyclopedia of Genes and Genomes.
Nucleic Acids Res. 1999 Jan 1;27(1):29-34. doi: 10.1093/nar/27.1.29.
8
The KEGG databases at GenomeNet.
Nucleic Acids Res. 2002 Jan 1;30(1):42-6. doi: 10.1093/nar/30.1.42.
9
Using the KEGG database resource.
Curr Protoc Bioinformatics. 2005 Oct;Chapter 1:Unit 1.12. doi: 10.1002/0471250953.bi0112s11.
10
Path2enet: generation of human pathway-derived networks in an expression specific context.
BMC Genomics. 2016 Oct 25;17(Suppl 8):731. doi: 10.1186/s12864-016-3066-7.

引用本文的文献

1
Spectral divergence prioritizes key classes, genes, and pathways shared between substance use disorders and cardiovascular disease.
Front Neurosci. 2025 Jul 22;19:1572243. doi: 10.3389/fnins.2025.1572243. eCollection 2025.
2
Integrated Multi-Omics Analysis of Cerebrospinal Fluid in Postoperative Delirium.
Biomolecules. 2024 Jul 30;14(8):924. doi: 10.3390/biom14080924.
4
KNeXT: a NetworkX-based topologically relevant KEGG parser.
Front Genet. 2024 Feb 13;15:1292394. doi: 10.3389/fgene.2024.1292394. eCollection 2024.
5
Metabolite Alterations and Interactions with Microbiota in Helicobacter pylori-Associated Gastric Lesions.
Microbiol Spectr. 2023 Aug 17;11(4):e0534722. doi: 10.1128/spectrum.05347-22. Epub 2023 Jun 26.
6
Artificial Cultivation Changes Foliar Endophytic Fungal Community of the Ornamental Plant .
Microorganisms. 2023 Mar 17;11(3):775. doi: 10.3390/microorganisms11030775.
8
Diversity Analysis of Bacterial and Function Prediction in Hurunge From Mongolia.
Front Nutr. 2022 Mar 25;9:835123. doi: 10.3389/fnut.2022.835123. eCollection 2022.
9
Identifying large-scale interaction atlases using probabilistic graphs and external knowledge.
J Clin Transl Sci. 2022 Feb 11;6(1):e27. doi: 10.1017/cts.2022.18. eCollection 2022.

本文引用的文献

1
Inference of Gene Regulatory Network Based on Local Bayesian Networks.
PLoS Comput Biol. 2016 Aug 1;12(8):e1005024. doi: 10.1371/journal.pcbi.1005024. eCollection 2016 Aug.
2
CyKEGGParser: tailoring KEGG pathways to fit into systems biology analysis workflows.
F1000Res. 2014 Jul 1;3:145. doi: 10.12688/f1000research.4410.2. eCollection 2014.
3
Bayesian pathway analysis of cancer microarray data.
PLoS One. 2014 Jul 18;9(7):e102803. doi: 10.1371/journal.pone.0102803. eCollection 2014.
4
Bayesian network prior: network analysis of biological data using external knowledge.
Bioinformatics. 2014 Mar 15;30(6):860-7. doi: 10.1093/bioinformatics/btt643. Epub 2013 Nov 9.
5
Precise generation of systems biology models from KEGG pathways.
BMC Syst Biol. 2013 Feb 21;7:15. doi: 10.1186/1752-0509-7-15.
6
KEGGParser: parsing and editing KEGG pathway maps in Matlab.
Bioinformatics. 2013 Feb 15;29(4):518-9. doi: 10.1093/bioinformatics/bts730. Epub 2013 Jan 3.
7
graphite - a Bioconductor package to convert pathway topology to gene network.
BMC Bioinformatics. 2012 Jan 31;13:20. doi: 10.1186/1471-2105-13-20.
8
KEGGtranslator: visualizing and converting the KEGG PATHWAY database to various formats.
Bioinformatics. 2011 Aug 15;27(16):2314-5. doi: 10.1093/bioinformatics/btr377. Epub 2011 Jun 23.
9
Pathway analysis of high-throughput biological data within a Bayesian network framework.
Bioinformatics. 2011 Jun 15;27(12):1667-74. doi: 10.1093/bioinformatics/btr269. Epub 2011 May 5.
10
KEGGconverter: a tool for the in-silico modelling of metabolic networks of the KEGG Pathways database.
BMC Bioinformatics. 2009 Oct 8;10:324. doi: 10.1186/1471-2105-10-324.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验