MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy.
CorWave SA, Clichy, France.
Int J Numer Method Biomed Eng. 2021 Jul;37(7):e3467. doi: 10.1002/cnm.3467. Epub 2021 May 4.
Numerical simulations of cardiac blood pump systems are integral to the optimization of device design, hydraulic performance and hemocompatibility. In wave membrane blood pumps, blood propulsion arises from the wave propagation along an oscillating immersed membrane, which generates small pockets of fluid that are pushed towards the outlet against an adverse pressure gradient. We studied the Fluid-Structure Interaction between the oscillating membrane and the blood flow via three-dimensional simulations using the Extended Finite Element Method (XFEM), an unfitted numerical technique that avoids remeshing by using a fluid fixed mesh. Our three-dimensional numerical simulations in a realistic pump geometry highlighted, for the first time in this field of application, that XFEM is a reliable strategy to handle complex industrial problems. Moreover, they showed the role of the membrane deformation in promoting a blood flow towards the outlet despite an adverse pressure gradient. We also simulated the pump system at different pressure conditions and we validated the numerical results against in-vitro experimental data.
心脏血泵系统的数值模拟是优化设备设计、水力性能和血液相容性的重要组成部分。在波膜血泵中,血液的推进是通过沿振荡浸入膜的波传播产生的,该波传播产生小的流体口袋,这些口袋被推向出口,对抗不利的压力梯度。我们通过使用扩展有限元法(XFEM)的三维模拟研究了振荡膜和血流之间的流固相互作用,XFEM 是一种无网格数值技术,通过使用固定的流体网格避免了重新网格划分。我们在真实泵几何形状中的三维数值模拟首次突出表明,XFEM 是处理复杂工业问题的可靠策略。此外,它们还表明了膜变形在促进血液流向出口的作用,尽管存在不利的压力梯度。我们还模拟了不同压力条件下的泵系统,并根据体外实验数据验证了数值结果。