Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark; Laboratoire de Physique Théorique, Ecole Normale Supérieure, 75 231 Paris Cedex 05, France.
Simons Centre for the Study of Living Machines, National Centre for Biological Sciences TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India.
Cell Syst. 2021 Apr 21;12(4):291-303. doi: 10.1016/j.cels.2021.03.003.
The fundamental mechanisms that control and regulate biological organisms exhibit a surprising level of complexity. Oscillators are perhaps the simplest motifs that produce time-varying dynamics and are ubiquitous in biological systems. It is also known that such biological oscillators interact with each other-for instance, circadian oscillators affect the cell cycle, and somitogenesis clock proteins in adjacent cells affect each other in developing embryos. Therefore, it is vital to understand the effects that can emerge from non-linear interaction between oscillations. Here, we show how oscillations typically arise in biology and take the reader on a tour through the great variety in dynamics that can emerge even from a single pair of coupled oscillators. We explain how chaotic dynamics can emerge and outline the methods of detecting this in experimental time traces. Finally, we discuss the potential role of such complex dynamical features in biological systems.
控制和调节生物有机体的基本机制表现出惊人的复杂性。振荡器也许是产生时变动力学的最简单的模式,并且在生物系统中无处不在。人们也知道,这种生物振荡器相互作用——例如,生物钟振荡器影响细胞周期,而相邻细胞中的体节时钟蛋白在发育中的胚胎中相互影响。因此,理解振荡之间非线性相互作用可能产生的影响至关重要。在这里,我们展示了振荡在生物学中是如何产生的,并带领读者了解即使是一对简单的耦合振荡器也能产生的各种动力学。我们解释了混沌动力学是如何产生的,并概述了在实验时间轨迹中检测到这种动力学的方法。最后,我们讨论了这种复杂动态特征在生物系统中的潜在作用。