Lee Jihye, Jeon Deok-Jin, Yeo Jong-Souk
School of Integrated Technology, Yonsei University, Incheon, 21983, Republic of Korea.
Yonsei Institute of Convergence Technology, Yonsei University, Incheon, 21983, Republic of Korea.
Adv Mater. 2021 Nov;33(47):e2006606. doi: 10.1002/adma.202006606. Epub 2021 Apr 23.
At the interfaces of metal and dielectric materials, strong light-matter interactions excite surface plasmons; this allows electromagnetic field confinement and enhancement on the sub-wavelength scale. Such phenomena have attracted considerable interest in the field of exotic material-based nanophotonic research, with potential applications including nonlinear spectroscopies, information processing, single-molecule sensing, organic-molecule devices, and plasmon chemistry. These innovative plasmonics-based technologies can meet the ever-increasing demands for speed and capacity in nanoscale devices, offering ultrasensitive detection capabilities and low-power operations. Size scaling from the nanometer to sub-nanometer ranges is consistently researched; as a result, the quantum behavior of localized surface plasmons, as well as those of matter, nonlocality, and quantum electron tunneling is investigated using an innovative nanofabrication and chemical functionalization approach, thereby opening a new era of quantum plasmonics. This new field enables the ultimate miniaturization of photonic components and provides extreme limits on light-matter interactions, permitting energy transport across the extremely small plasmonic gap. In this review, a comprehensive overview of the recent developments of quantum plasmonic resonators with particular focus on novel materials is presented. By exploring the novel gap materials in quantum regime, the potential quantum technology applications are also searched for and mapped out.
在金属和介电材料的界面处,强光与物质的相互作用会激发表面等离子体激元;这使得电磁场能够在亚波长尺度上被限制和增强。这种现象在基于奇异材料的纳米光子学研究领域引起了相当大的兴趣,其潜在应用包括非线性光谱学、信息处理、单分子传感、有机分子器件和等离子体化学。这些基于等离子体激元的创新技术能够满足纳米级器件对速度和容量不断增长的需求,提供超灵敏的检测能力和低功耗运行。人们一直在研究从纳米尺度到亚纳米尺度的尺寸缩放;因此,利用创新的纳米制造和化学功能化方法研究了局域表面等离子体激元以及物质、非局域性和量子电子隧穿的量子行为,从而开启了量子等离子体激元学的新时代。这个新领域能够实现光子组件的最终小型化,并对光与物质的相互作用设定了极限,允许能量在极小的等离子体激元间隙中传输。在这篇综述中,对量子等离子体激元谐振器的最新进展进行了全面概述,特别关注新型材料。通过探索量子领域中的新型间隙材料,还寻找并规划了潜在的量子技术应用。