Shi Kezhang, Chen Zhaoyang, Xu Xinan, Evans Julian, He Sailing
Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310058, China.
Centre for Optical and Electromagnetic Research, ZJU-SCNU Joint Center of Photonics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
Adv Mater. 2021 Dec;33(52):e2106097. doi: 10.1002/adma.202106097. Epub 2021 Oct 22.
Collective optoelectronic phenomena such as plasmons and phonon polaritons can drive processes in many branches of nanoscale science. Classical physics predicts that a perfect thermal emitter operates at the black body limit. Numerous experiments have shown that surface phonon polaritons allow emission two orders of magnitude above the limit at a gap distance of ≈50 nm. This work shows that a supported multilayer graphene structure improves the state of the art by around one order of magnitude with a ≈1129-fold-enhancement at a gap distance of ≈55 nm. Coupled surface plasmon polaritons at mid- and far-infrared frequencies allow for near-unity photon tunneling across a broad swath of k-space enabling the improved result. Electric tuning of the Fermi-level allows for the detailed characterization and optimization of the colossal nanoscale heat transfer.
诸如等离激元和声子极化激元等集体光电现象能够驱动纳米尺度科学众多分支中的各种过程。经典物理学预测,一个完美的热发射器在黑体极限下运行。大量实验表明,表面声子极化激元在约50纳米的间隙距离处能够实现比该极限高出两个数量级的发射。这项工作表明,一种支撑多层石墨烯结构将现有技术水平提高了约一个数量级,在约55纳米的间隙距离处实现了约1129倍的增强。中红外和远红外频率下的耦合表面等离激元极化激元允许在宽广的k空间范围内实现近乎单位的光子隧穿,从而带来了这一改进结果。费米能级的电调谐使得能够对巨大的纳米尺度热传递进行详细表征和优化。