Suppr超能文献

揭示隧穿等离子体中的量子 regime。

Revealing the quantum regime in tunnelling plasmonics.

机构信息

Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK.

出版信息

Nature. 2012 Nov 22;491(7425):574-7. doi: 10.1038/nature11653. Epub 2012 Nov 7.

Abstract

When two metal nanostructures are placed nanometres apart, their optically driven free electrons couple electrically across the gap. The resulting plasmons have enhanced optical fields of a specific colour tightly confined inside the gap. Many emerging nanophotonic technologies depend on the careful control of this plasmonic coupling, including optical nanoantennas for high-sensitivity chemical and biological sensors, nanoscale control of active devices, and improved photovoltaic devices. But for subnanometre gaps, coherent quantum tunnelling becomes possible and the system enters a regime of extreme non-locality in which previous classical treatments fail. Electron correlations across the gap that are driven by quantum tunnelling require a new description of non-local transport, which is crucial in nanoscale optoelectronics and single-molecule electronics. Here, by simultaneously measuring both the electrical and optical properties of two gold nanostructures with controllable subnanometre separation, we reveal the quantum regime of tunnelling plasmonics in unprecedented detail. All observed phenomena are in good agreement with recent quantum-based models of plasmonic systems, which eliminate the singularities predicted by classical theories. These findings imply that tunnelling establishes a quantum limit for plasmonic field confinement of about 10(-8)λ(3) for visible light (of wavelength λ). Our work thus prompts new theoretical and experimental investigations into quantum-domain plasmonic systems, and will affect the future of nanoplasmonic device engineering and nanoscale photochemistry.

摘要

当两个金属纳米结构相隔纳米距离时,它们的自由电子在间隙中通过电耦合。由此产生的等离子体具有增强的特定颜色的光场,被紧密限制在间隙内。许多新兴的纳米光子技术依赖于对这种等离子体耦合的精确控制,包括用于高灵敏度化学和生物传感器的光学纳米天线、主动器件的纳米级控制以及改进的光伏器件。但是对于亚纳米间隙,相干量子隧穿成为可能,系统进入了一个极端非局部的区域,之前的经典处理方法在此失效。由量子隧穿驱动的间隙中的电子相关需要对非局部输运进行新的描述,这在纳米尺度光电学和单分子电子学中至关重要。在这里,我们通过同时测量两个具有可控亚纳米分离的金纳米结构的电学和光学性质,以前所未有的细节揭示了隧穿等离子体的量子区域。所有观察到的现象都与最近的等离子体系统的基于量子的模型很好地吻合,这些模型消除了经典理论预测的奇点。这些发现意味着隧穿为可见光(波长为 λ)的等离子体场限制建立了一个约 10(-8)λ(3)的量子极限。因此,我们的工作促使对量子域等离子体系统进行新的理论和实验研究,并将影响纳米等离子体器件工程和纳米尺度光化学的未来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验