Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China.
Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India.
Adv Mater. 2021 Jun;33(22):e2007465. doi: 10.1002/adma.202007465. Epub 2021 Apr 23.
Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.
无线纳米/微米马达由化学反应和/或外部场驱动,产生动力,执行任务,并显著扩展被动生物医学微载体的短程动力响应。然而,在微米马达能够转化为临床应用之前,必须解决几个主要问题,包括材料的生物相容性、化学燃料的毒性以及深部组织成像方法。具有酶样特性的纳米材料(例如,过氧化氢酶、氧化酶、过氧化物酶、超氧化物歧化酶),即纳米酶,可以显著扩大微米马达化学燃料的范围。纳米酶、微米马达和微流控技术的融合,可以导致多功能微米马达的制造在合理数量、所需子系统的封装以及具有可调生物、物理、化学和机械性能的 FDA 批准的核壳结构的工程方面发生范式转变。微流控方法用于制备稳定的气泡/微泡和胶囊,集成了超声、光声、荧光和磁共振成像模式。这里的目的是讨论三个独立的新兴主题:微米马达、纳米酶和微流控技术的跨学科方法,以创造性地:1)接受新思想,2)跨越界限思考,3)解决超出单一学科范围的问题,从而开发用于各种生物应用的微生物化学机械系统。