Weil Patrick Philipp, Hentschel Jacqueline, Schult Frank, Pembaur Anton, Ghebremedhin Beniam, Mboma Olivier, Heusch Andreas, Reuter Anna-Christin, Müller Daniel, Wirth Stefan, Aydin Malik, Jenke Andreas C W, Postberg Jan
Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany.
HELIOS University Hospital Wuppertal, Children's Hospital, Centre for Clinical & Translational Research (CCTR), Witten/Herdecke University, Heusnerstr. 40, 42283, Wuppertal, Germany.
Mol Cell Pediatr. 2021 Apr 24;8(1):4. doi: 10.1186/s40348-021-00115-x.
Reverse transcription of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (+)RNA genome and subgenomic RNAs (sgRNAs) and subsequent quantitative polymerase chain reaction (RT-qPCR) is the reliable diagnostic gold standard for COVID-19 diagnosis and the identification of potential spreaders. Apart from clinical relevance and containment, for specific questions, it might be of interest to (re)investigate cases with low SARS-CoV-2 load, where RT-qPCR alone can deliver conflicting results, even though these cases might neither be clinically relevant nor significant for containment measures, because they might probably not be infectious. In order to expand the diagnostic bandwidth for non-routine questions, particularly for the reliable discrimination between negative and false-negative specimens associated with high C values, we combined the RT-qPCR workflow with subsequent pyrosequencing of a S-gene amplicon. This expansion can help to confirm SARS-CoV-2 infections without the demand of confirmative antibody testing, which requires to summon patients again for blood sampling few to several weeks after symptom onset.
We successfully established a combined RT-qPCR and S-gene pyrosequencing method which can be optionally exploited after routine diagnostics. This allows a reliable interpretation of RT-qPCR results in specimens with relatively low viral loads and close to the detection limits of qPCR. After laboratory implementation, we tested the combined method in a large pediatric cohort from two German medical centers (n=769). Pyrosequencing after RT-qPCR enabled us to uncover 5 previously unrecognized cases of pediatric SARS-CoV-2-associated diseases, mainly exhibiting mild and heterogeneous presentation-apart from a single case of multisystem inflammatory syndrome in children (MIS-C) associated with SARS-CoV-2, who was hospitalized in the course of the study.
The proposed protocol allows a specific and sensitive confirmation of SARS-CoV-2 infections close to the detection limits of RT-qPCR. The tested biotinylated primers do not negatively affect the RT-qPCR pipeline and thus can be optionally applied to enable deeper inspection of RT-qPCR results by subsequent pyrosequencing. Moreover, due to the incremental transmission of SARS-CoV-2 variants of concern, we note that the used strategy can uncover (Spike) P681H allowing the pre-selection of SARS-CoV-2 B.1.1.7 candidate specimens for deep sequencing.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)(+)RNA基因组和亚基因组RNA(sgRNAs)的逆转录以及随后的定量聚合酶链反应(RT-qPCR)是COVID-19诊断和识别潜在传播者的可靠诊断金标准。除了临床相关性和疫情防控外,对于特定问题,重新调查SARS-CoV-2载量较低的病例可能会很有意义,尽管这些病例可能在临床上无关紧要,对防控措施也无重大影响,因为它们可能不具有传染性,但仅靠RT-qPCR可能会得出相互矛盾的结果。为了扩大针对非常规问题的诊断范围,特别是为了可靠地区分与高C值相关的阴性和假阴性样本,我们将RT-qPCR工作流程与随后的S基因扩增子焦磷酸测序相结合。这种扩展有助于在无需进行确认性抗体检测的情况下确认SARS-CoV-2感染,而确认性抗体检测需要在症状出现后数周至数周内再次召集患者进行采血。
我们成功建立了一种RT-qPCR和S基因焦磷酸测序相结合的方法,该方法可在常规诊断后选择性使用。这使得对病毒载量相对较低且接近qPCR检测限的样本中的RT-qPCR结果能够进行可靠解读。在实验室实施后,我们在来自两个德国医疗中心的一大群儿童队列(n = 769)中测试了这种联合方法。RT-qPCR后的焦磷酸测序使我们发现了5例先前未被识别的儿童SARS-CoV-2相关疾病病例,这些病例主要表现为轻度和异质性症状——除了1例与SARS-CoV-2相关的儿童多系统炎症综合征(MIS-C)病例,该病例在研究过程中住院治疗。
所提出的方案能够对接近RT-qPCR检测限的SARS-CoV-2感染进行特异性和敏感性确认。经测试,生物素化引物不会对RT-qPCR流程产生负面影响,因此可以选择性应用,以便通过随后的焦磷酸测序对RT-qPCR结果进行更深入检查。此外,由于关注的SARS-CoV-2变异株传播增加,我们注意到所采用的策略能够发现(刺突蛋白)P681H,从而允许对SARS-CoV-2 B.1.1.7候选样本进行预筛选以进行深度测序。