Gosselin Laura, Thibault Maxime, Lebel Denis, Bussières Jean-François
travaille à l'Unité de recherche en pratique pharmaceutique, Département de pharmacie, CHU Sainte-Justine, Montréal (Québec). Elle est aussi candidate au Pharm. D. à l'Université de Lille, Lille (France).
, B. Pharm., M. Sc., travaille à l'Unité de recherche en pratique pharmaceutique, Département de pharmacie, CHU Sainte-Justine, Montréal (Québec).
Can J Hosp Pharm. 2021 Spring;74(2):135-143. Epub 2021 Apr 1.
Artificial intelligence (AI) can be described as an advanced technology in which machines display a certain form of intelligence.
The primary objective was to perform a narrative review of studies evaluating the feasibility and impact of AI in pharmacy. The secondary objective was to create a mind map of AI in health care.
Four databases were consulted: PubMed, Medline, Embase, and CINAHL.
Four search strategies were developed. Initial selection of articles was based on their titles and abstracts; the full texts were then evaluated by a research assistant, with review by a pharmacist. Articles were included if they described or evaluated the feasibility or impact of AI in pharmacy.
A total of 362 articles were identified by the literature review, of which 18 met the inclusion criteria. The studies were mainly conducted in the United States (72%, 13/18). The article topics were, in decreasing order, prediction of response to treatments and adverse effects (33%, 6/18), patient prioritization (28%, 5/18), treatment adherence (22%, 4/18), validation of prescriptions and electronic prescription (17%, 3/18), and other themes (e.g., diagnosis, costs, insurance, and verification of syringe volume).
This narrative review highlighted 18 studies evaluating the feasibility and impact of AI in pharmacy. The studies used various methodologies in different settings, both retail pharmacies and hospital pharmacies. It is still too soon to predict the implications of AI for pharmacy, but these studies emphasize the importance of attention in this area.
人工智能(AI)可被描述为一种先进技术,在这种技术中机器展现出某种形式的智能。
主要目的是对评估人工智能在药学领域的可行性和影响的研究进行叙述性综述。次要目的是创建医疗保健领域人工智能的思维导图。
查阅了四个数据库:PubMed、Medline、Embase和CINAHL。
制定了四种检索策略。文章的初步筛选基于标题和摘要;然后由一名研究助理评估全文,并由一名药剂师进行审核。如果文章描述或评估了人工智能在药学领域的可行性或影响,则将其纳入。
通过文献综述共识别出362篇文章,其中18篇符合纳入标准。这些研究主要在美国进行(72%,13/18)。文章主题按降序排列为:治疗反应和不良反应预测(33%,6/18)、患者优先级排序(28%,5/18)、治疗依从性(22%,4/18)、处方验证和电子处方(17%,3/18)以及其他主题(如诊断、成本、保险和注射器容量验证)。
本叙述性综述重点介绍了18项评估人工智能在药学领域的可行性和影响的研究。这些研究在零售药店和医院药房等不同环境中采用了各种方法。现在预测人工智能对药学的影响还为时过早,但这些研究强调了在该领域予以关注的重要性。