Suppr超能文献

[无可用内容]。

[Not Available].

作者信息

Gosselin Laura, Thibault Maxime, Lebel Denis, Bussières Jean-François

机构信息

travaille à l'Unité de recherche en pratique pharmaceutique, Département de pharmacie, CHU Sainte-Justine, Montréal (Québec). Elle est aussi candidate au Pharm. D. à l'Université de Lille, Lille (France).

, B. Pharm., M. Sc., travaille à l'Unité de recherche en pratique pharmaceutique, Département de pharmacie, CHU Sainte-Justine, Montréal (Québec).

出版信息

Can J Hosp Pharm. 2021 Spring;74(2):135-143. Epub 2021 Apr 1.

Abstract

BACKGROUND

Artificial intelligence (AI) can be described as an advanced technology in which machines display a certain form of intelligence.

OBJECTIVES

The primary objective was to perform a narrative review of studies evaluating the feasibility and impact of AI in pharmacy. The secondary objective was to create a mind map of AI in health care.

DATA SOURCES

Four databases were consulted: PubMed, Medline, Embase, and CINAHL.

STUDY SELECTION AND DATA EXTRACTION

Four search strategies were developed. Initial selection of articles was based on their titles and abstracts; the full texts were then evaluated by a research assistant, with review by a pharmacist. Articles were included if they described or evaluated the feasibility or impact of AI in pharmacy.

DATA SYNTHESIS

A total of 362 articles were identified by the literature review, of which 18 met the inclusion criteria. The studies were mainly conducted in the United States (72%, 13/18). The article topics were, in decreasing order, prediction of response to treatments and adverse effects (33%, 6/18), patient prioritization (28%, 5/18), treatment adherence (22%, 4/18), validation of prescriptions and electronic prescription (17%, 3/18), and other themes (e.g., diagnosis, costs, insurance, and verification of syringe volume).

CONCLUSIONS

This narrative review highlighted 18 studies evaluating the feasibility and impact of AI in pharmacy. The studies used various methodologies in different settings, both retail pharmacies and hospital pharmacies. It is still too soon to predict the implications of AI for pharmacy, but these studies emphasize the importance of attention in this area.

摘要

背景

人工智能(AI)可被描述为一种先进技术,在这种技术中机器展现出某种形式的智能。

目的

主要目的是对评估人工智能在药学领域的可行性和影响的研究进行叙述性综述。次要目的是创建医疗保健领域人工智能的思维导图。

数据来源

查阅了四个数据库:PubMed、Medline、Embase和CINAHL。

研究选择和数据提取

制定了四种检索策略。文章的初步筛选基于标题和摘要;然后由一名研究助理评估全文,并由一名药剂师进行审核。如果文章描述或评估了人工智能在药学领域的可行性或影响,则将其纳入。

数据综合

通过文献综述共识别出362篇文章,其中18篇符合纳入标准。这些研究主要在美国进行(72%,13/18)。文章主题按降序排列为:治疗反应和不良反应预测(33%,6/18)、患者优先级排序(28%,5/18)、治疗依从性(22%,4/18)、处方验证和电子处方(17%,3/18)以及其他主题(如诊断、成本、保险和注射器容量验证)。

结论

本叙述性综述重点介绍了18项评估人工智能在药学领域的可行性和影响的研究。这些研究在零售药店和医院药房等不同环境中采用了各种方法。现在预测人工智能对药学的影响还为时过早,但这些研究强调了在该领域予以关注的重要性。

相似文献

1
[Not Available].[无可用内容]。
Can J Hosp Pharm. 2021 Spring;74(2):135-143. Epub 2021 Apr 1.

本文引用的文献

5
Deep Learning: A Primer for Radiologists.深度学习:放射科医生入门。
Radiographics. 2017 Nov-Dec;37(7):2113-2131. doi: 10.1148/rg.2017170077.
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验