Suppr超能文献

使用高效网络的迁移学习对苏木精和伊红染色的乳腺癌组织学显微镜图像进行分类

Classification of Hematoxylin and Eosin-Stained Breast Cancer Histology Microscopy Images Using Transfer Learning with EfficientNets.

作者信息

Munien Chanaleä, Viriri Serestina

机构信息

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 217013433, South Africa.

出版信息

Comput Intell Neurosci. 2021 Apr 9;2021:5580914. doi: 10.1155/2021/5580914. eCollection 2021.

Abstract

Breast cancer is a fatal disease and is a leading cause of death in women worldwide. The process of diagnosis based on biopsy tissue is nontrivial, time-consuming, and prone to human error, and there may be conflict about the final diagnosis due to interobserver variability. Computer-aided diagnosis systems have been designed and implemented to combat these issues. These systems contribute significantly to increasing the efficiency and accuracy and reducing the cost of diagnosis. Moreover, these systems must perform better so that their determined diagnosis can be more reliable. This research investigates the application of the EfficientNet architecture for the classification of hematoxylin and eosin-stained breast cancer histology images provided by the ICIAR2018 dataset. Specifically, seven EfficientNets were fine-tuned and evaluated on their ability to classify images into four classes: and . Moreover, two standard stain normalization techniques, Reinhard and Macenko, were observed to measure the impact of stain normalization on performance. The outcome of this approach reveals that the EfficientNet-B2 model yielded an accuracy and sensitivity of 98.33% using Reinhard stain normalization method on the training images and an accuracy and sensitivity of 96.67% using the Macenko stain normalization method. These satisfactory results indicate that transferring generic features from natural images to medical images through fine-tuning on EfficientNets can achieve satisfactory results.

摘要

乳腺癌是一种致命疾病,是全球女性死亡的主要原因。基于活检组织的诊断过程复杂、耗时且容易出现人为误差,并且由于观察者之间的差异,最终诊断可能存在争议。已设计并实施了计算机辅助诊断系统来应对这些问题。这些系统在提高诊断效率和准确性以及降低诊断成本方面做出了重大贡献。此外,这些系统必须表现得更好,以便其确定的诊断更加可靠。本研究调查了EfficientNet架构在对ICIAR2018数据集提供的苏木精和伊红染色的乳腺癌组织学图像进行分类方面的应用。具体而言,对七个EfficientNet进行了微调,并评估了它们将图像分类为四类的能力: 和 。此外,观察了两种标准的染色归一化技术,即Reinhard和Macenko,以测量染色归一化对性能的影响。该方法的结果表明,使用Reinhard染色归一化方法在训练图像上,EfficientNet - B2模型的准确率和灵敏度为98.33%,使用Macenko染色归一化方法时,准确率和灵敏度为96.67%。这些令人满意的结果表明,通过在EfficientNet上进行微调,将自然图像的通用特征转移到医学图像上可以取得令人满意的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12b/8052174/d10fe358b3c6/CIN2021-5580914.004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验