Suppr超能文献

使用深度和集成机器学习提高结直肠癌组织学分解的性能。

Improving performance in colorectal cancer histology decomposition using deep and ensemble machine learning.

作者信息

Prezja Fabi, Annala Leevi, Kiiskinen Sampsa, Lahtinen Suvi, Ojala Timo, Ruusuvuori Pekka, Kuopio Teijo

机构信息

University of Jyväskylä, Faculty of Information Technology, Jyväskylä, 40014, Finland.

University of Helsinki, Faculty of Science, Department of Computer Science, Helsinki, Finland.

出版信息

Heliyon. 2024 Sep 10;10(18):e37561. doi: 10.1016/j.heliyon.2024.e37561. eCollection 2024 Sep 30.

Abstract

In routine colorectal cancer management, histologic samples stained with hematoxylin and eosin are commonly used. Nonetheless, their potential for defining objective biomarkers for patient stratification and treatment selection is still being explored. The current gold standard relies on expensive and time-consuming genetic tests. However, recent research highlights the potential of convolutional neural networks (CNNs) to facilitate the extraction of clinically relevant biomarkers from these readily available images. These CNN-based biomarkers can predict patient outcomes comparably to golden standards, with the added advantages of speed, automation, and minimal cost. The predictive potential of CNN-based biomarkers fundamentally relies on the ability of CNNs to accurately classify diverse tissue types from whole slide microscope images. Consequently, enhancing the accuracy of tissue class decomposition is critical to amplifying the prognostic potential of imaging-based biomarkers. This study introduces a hybrid deep transfer learning and ensemble machine learning model that improves upon previous approaches, including a transformer and neural architecture search baseline for this task. We employed a pairing of the EfficientNetV2 architecture with a random forest classification head. Our model achieved 96.74% accuracy (95% CI: 96.3%-97.1%) on the external test set and 99.89% on the internal test set. Recognizing the potential of these models in the task, we have made them publicly available.

摘要

在常规结直肠癌管理中,苏木精和伊红染色的组织学样本被广泛使用。尽管如此,它们在定义用于患者分层和治疗选择的客观生物标志物方面的潜力仍在探索中。目前的金标准依赖于昂贵且耗时的基因检测。然而,最近的研究强调了卷积神经网络(CNN)从这些现成图像中提取临床相关生物标志物的潜力。这些基于CNN的生物标志物可以与金标准相当准确地预测患者预后,还具有速度快、自动化和成本低的额外优势。基于CNN的生物标志物的预测潜力从根本上依赖于CNN从全玻片显微镜图像中准确分类不同组织类型的能力。因此,提高组织类别分解的准确性对于增强基于成像的生物标志物的预后潜力至关重要。本研究引入了一种混合深度迁移学习和集成机器学习模型,该模型改进了先前的方法,包括针对此任务的Transformer和神经架构搜索基线。我们采用了EfficientNetV2架构与随机森林分类头的组合。我们的模型在外部测试集上的准确率达到了96.74%(95%置信区间:96.3%-97.1%),在内部测试集上达到了99.89%。认识到这些模型在该任务中的潜力,我们已将它们公开提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e4/11415691/4f0896ce3854/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验