文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Boosted EfficientNet: Detection of Lymph Node Metastases in Breast Cancer Using Convolutional Neural Networks.

作者信息

Wang Jun, Liu Qianying, Xie Haotian, Yang Zhaogang, Zhou Hefeng

机构信息

Department of Informatics, King's College London, London WC2R 2LS, UK.

College of Management, Shenzhen University, Shenzhen 518060, China.

出版信息

Cancers (Basel). 2021 Feb 7;13(4):661. doi: 10.3390/cancers13040661.


DOI:10.3390/cancers13040661
PMID:33562232
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7915222/
Abstract

(1) Purpose: To improve the capability of EfficientNet, including developing a cropping method called Random Center Cropping (RCC) to retain the original image resolution and significant features on the images' center area, reducing the downsampling scale of EfficientNet to facilitate the small resolution images of RPCam datasets, and integrating attention and Feature Fusion (FF) mechanisms with EfficientNet to obtain features containing rich semantic information. (2) Methods: We adopt the Convolutional Neural Network (CNN) to detect and classify lymph node metastasis in breast cancer. (3) Results: Experiments illustrate that our methods significantly boost performance of basic CNN architectures, where the best-performed method achieves an accuracy of 97.96% ± 0.03% and an Area Under the Curve (AUC) of 99.68% ± 0.01% on RPCam datasets, respectively. (4) Conclusions: (1) To our limited knowledge, we are the only study to explore the power of EfficientNet on Metastatic Breast Cancer (MBC) classification, and elaborate experiments are conducted to compare the performance of EfficientNet with other state-of-the-art CNN models. It might provide inspiration for researchers who are interested in image-based diagnosis using Deep Learning (DL). (2) We design a novel data augmentation method named RCC to promote the data enrichment of small resolution datasets. (3) All of our four technological improvements boost the performance of the original EfficientNet.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ad/7915222/6657ddcc46c7/cancers-13-00661-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ad/7915222/81c56178e01a/cancers-13-00661-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ad/7915222/ac9c35b47103/cancers-13-00661-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ad/7915222/3e5da25bd187/cancers-13-00661-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ad/7915222/2629cf4c21d5/cancers-13-00661-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ad/7915222/44afe4c66fa9/cancers-13-00661-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ad/7915222/b13e0f5f688a/cancers-13-00661-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ad/7915222/6657ddcc46c7/cancers-13-00661-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ad/7915222/81c56178e01a/cancers-13-00661-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ad/7915222/ac9c35b47103/cancers-13-00661-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ad/7915222/3e5da25bd187/cancers-13-00661-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ad/7915222/2629cf4c21d5/cancers-13-00661-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ad/7915222/44afe4c66fa9/cancers-13-00661-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ad/7915222/b13e0f5f688a/cancers-13-00661-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ad/7915222/6657ddcc46c7/cancers-13-00661-g007.jpg

相似文献

[1]
Boosted EfficientNet: Detection of Lymph Node Metastases in Breast Cancer Using Convolutional Neural Networks.

Cancers (Basel). 2021-2-7

[2]
Performance of convolutional neural networks for the classification of brain tumors using magnetic resonance imaging.

Heliyon. 2024-2-2

[3]
Classification of skin cancer from dermoscopic images using deep neural network architectures.

Multimed Tools Appl. 2023

[4]
Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from F-FDG PET/CT images.

EJNMMI Res. 2017-12

[5]
Computer-aided diagnostic models to classify lymph node metastasis and lymphoma involvement in enlarged cervical lymph nodes using PET/CT.

Med Phys. 2023-1

[6]
Efficient Axillary Lymph Node Detection Via Two-stage Spatial-information-fusion-based CNN.

Comput Methods Programs Biomed. 2022-8

[7]
DLCNBC-SA: a model for assessing axillary lymph node metastasis status in early breast cancer patients.

Quant Imaging Med Surg. 2024-8-1

[8]
Combine EfficientNet and CNN for 3D model classification.

Math Biosci Eng. 2023-3-13

[9]
Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images.

Comput Methods Programs Biomed. 2021-10

[10]
Differentiation of lung and breast cancer brain metastases: Comparison of texture analysis and deep convolutional neural networks.

J Clin Ultrasound. 2023

引用本文的文献

[1]
Can deep learning technology really recognize Mpox? A positive response from the EfficientNet model.

Front Microbiol. 2025-8-11

[2]
Breast cancer detection based on histological images using fusion of diffusion model outputs.

Sci Rep. 2025-7-1

[3]
AI-augmented pathology: the experience of transfer learning and intra-domain data diversity in breast cancer metastasis detection.

Front Oncol. 2025-6-11

[4]
Preliminary exploratory study on differential diagnosis between benign and malignant peripheral lung tumors: based on deep learning networks.

Front Med (Lausanne). 2025-3-27

[5]
Explainability of a Deep Learning-Based Classification Model for Antineutrophil Cytoplasmic Autoantibody-Associated Glomerulonephritis.

Kidney Int Rep. 2024-11-14

[6]
A composite scaling network of EfficientNet for improving spatial domain identification performance.

Commun Biol. 2024-11-25

[7]
ANFIS Fuzzy convolutional neural network model for leaf disease detection.

Front Plant Sci. 2024-11-5

[8]
A deep learning model to enhance the classification of primary bone tumors based on incomplete multimodal images in X-ray, CT, and MRI.

Cancer Imaging. 2024-10-10

[9]
Deep learning empowered breast cancer diagnosis: Advancements in detection and classification.

PLoS One. 2024

[10]
Convolutional neural network applied to preoperative venous-phase CT images predicts risk category in patients with gastric gastrointestinal stromal tumors.

BMC Cancer. 2024-3-1

本文引用的文献

[1]
Automatic mass detection in mammograms using deep convolutional neural networks.

J Med Imaging (Bellingham). 2019-7

[2]
Immunomagnetic sequential ultrafiltration (iSUF) platform for enrichment and purification of extracellular vesicles from biofluids.

Sci Rep. 2021-4-13

[3]
Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network.

Appl Soft Comput. 2020-11

[4]
Nanoscale Technologies in Highly Sensitive Diagnosis of Cardiovascular Diseases.

Front Bioeng Biotechnol. 2020-6-5

[5]
Validation of a digital pathology system including remote review during the COVID-19 pandemic.

Mod Pathol. 2020-6-22

[6]
Fabrication of Injectable, Porous Hyaluronic Acid Hydrogel Based on an In-Situ Bubble-Forming Hydrogel Entrapment Process.

Polymers (Basel). 2020-5-16

[7]
Deep Learning vs. Radiomics for Predicting Axillary Lymph Node Metastasis of Breast Cancer Using Ultrasound Images: Don't Forget the Peritumoral Region.

Front Oncol. 2020-1-31

[8]
Exosomes: A Novel Therapeutic Agent for Cartilage and Bone Tissue Regeneration.

Dose Response. 2019-12-13

[9]
Isolation and Detection Technologies of Extracellular Vesicles and Application on Cancer Diagnostic.

Dose Response. 2019-12-9

[10]
Nanotechnology platforms for cancer immunotherapy.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索