Wang Jun, Liu Qianying, Xie Haotian, Yang Zhaogang, Zhou Hefeng
Department of Informatics, King's College London, London WC2R 2LS, UK.
College of Management, Shenzhen University, Shenzhen 518060, China.
Cancers (Basel). 2021 Feb 7;13(4):661. doi: 10.3390/cancers13040661.
(1) Purpose: To improve the capability of EfficientNet, including developing a cropping method called Random Center Cropping (RCC) to retain the original image resolution and significant features on the images' center area, reducing the downsampling scale of EfficientNet to facilitate the small resolution images of RPCam datasets, and integrating attention and Feature Fusion (FF) mechanisms with EfficientNet to obtain features containing rich semantic information. (2) Methods: We adopt the Convolutional Neural Network (CNN) to detect and classify lymph node metastasis in breast cancer. (3) Results: Experiments illustrate that our methods significantly boost performance of basic CNN architectures, where the best-performed method achieves an accuracy of 97.96% ± 0.03% and an Area Under the Curve (AUC) of 99.68% ± 0.01% on RPCam datasets, respectively. (4) Conclusions: (1) To our limited knowledge, we are the only study to explore the power of EfficientNet on Metastatic Breast Cancer (MBC) classification, and elaborate experiments are conducted to compare the performance of EfficientNet with other state-of-the-art CNN models. It might provide inspiration for researchers who are interested in image-based diagnosis using Deep Learning (DL). (2) We design a novel data augmentation method named RCC to promote the data enrichment of small resolution datasets. (3) All of our four technological improvements boost the performance of the original EfficientNet.
(1) 目的:提高EfficientNet的性能,包括开发一种名为随机中心裁剪(RCC)的裁剪方法以保留原始图像分辨率和图像中心区域的重要特征,降低EfficientNet的下采样比例以适应RPCam数据集的小分辨率图像,并将注意力机制和特征融合(FF)机制与EfficientNet集成以获得包含丰富语义信息的特征。(2) 方法:我们采用卷积神经网络(CNN)对乳腺癌中的淋巴结转移进行检测和分类。(3) 结果:实验表明,我们的方法显著提升了基本CNN架构的性能,其中性能最佳的方法在RPCam数据集上分别达到了97.96%±0.03%的准确率和99.68%±0.01%的曲线下面积(AUC)。(4) 结论:(1) 据我们所知,我们是唯一一项探索EfficientNet在转移性乳腺癌(MBC)分类方面能力的研究,并进行了详细实验以比较EfficientNet与其他先进CNN模型的性能。这可能为对使用深度学习(DL)进行基于图像的诊断感兴趣的研究人员提供灵感。(2) 我们设计了一种名为RCC的新型数据增强方法,以促进小分辨率数据集的数据丰富性。(3) 我们的所有四项技术改进都提升了原始EfficientNet的性能。